6533b836fe1ef96bd12a088d

RESEARCH PRODUCT

Nuclear Magnetic Resonance and Electron Spin Resonance Spectroscopy

A. Margaret ChippendaleReinhard MeusingerShirley A. Fairhurst

subject

Deuterium NMRNuclear magnetic resonanceSolid-state nuclear magnetic resonanceChemistryCarbon-13 NMR satelliteAnalytical chemistryFluorine-19 NMRNuclear magnetic resonance spectroscopyNuclear magnetic resonance crystallographyCarbon-13 NMREarth's field NMR

description

The article contains sections titled: 1. Introduction 2. Principles of Magnetic Resonance 2.1. Nuclear and Electronic Properties 2.2. Nuclei and Electrons in a Stationary Magnetic Field 2.3. Basic Principles of the NMR and ESR Experiments 2.4. Relaxation 3. High-Resolution Solution NMR Spectroscopy 3.1. The NMR Experiment 3.1.1. Continuous Wave Methodology 3.1.2. Fourier Transform Methodology 3.2. Spectral Parameters 3.2.1. Chemical Shift 3.2.2. Spin - Spin Coupling 3.2.3. Signal Intensity 3.2.4. Relaxation Times 3.3. NMR and Structure 3.3.1. Hydrogen (1H and 2H) 3.3.2. Carbon (13C) 3.3.3. Fluorine (19F) 3.3.4. Phosphorus (31P) 3.3.5. Nitrogen (14N and 15N) 3.3.6. Oxygen (17O) 3.3.7. Silicon (29Si) 3.4. Double Resonance Techniques 3.4.1. Homonuclear Spin Decoupling 3.4.2. Heteronuclear Spin Decoupling 3.4.3. NOE Difference Spectroscopy 3.5. One-Dimensional Multi-Pulse FT Experiments 3.5.1. T1 Measurement 3.5.2. T2 Measurement 3.5.3. Spectral Editing Experiments 3.6. Multi-Dimensional NMR 3.6.1. Basic Principles 3.6.2. J-Resolved Spectra 3.6.3. Homonuclear Chemical Shift Correlation (COSY) 3.6.4. Heteronuclear Chemical Shift Correlation (HETCOR, HMQC) 3.6.5. Homonuclear NOE Correlation 3.7. NMR Spectral Collections, Databases, and Expert Systems 3.8. Applications 3.8.1. Chemical Structure Determination 3.8.2. Quantitative Chemical Analysis by NMR 3.8.3. Rate Processes and NMR Spectra 3.8.4. NMR Methods Utilized in Combinatorial Chemistry and Biochemistry 4. NMR of Solids and Heterogeneous Systems 4.1. High-Resolution NMR of Solids 4.2. Low Resolution 1H NMR of Heterogeneous Systems 5. NMR Imaging 6. ESR Spectroscopy 6.1. The ESR Experiment 6.1.1. Continuous Wave ESR 6.1.2. ENDOR and Triple Resonance 6.1.3. Pulse ESR 6.1.4. ESR Imaging 6.2. Spectral Parameters 6.2.1. g-Factor 6.2.2. Nuclear Hyperfine Interaction 6.2.3. Quantitative Measurements 6.3. ESR in the Liquid State 6.3.1. Slow Molecular Tumbling 6.3.2. Exchange Processes 6.4. Computer Simulation of Spectra 6.5. Specialist Techniques 6.5.1. Spin Trapping 6.5.2. Spin Labeling 6.5.3. Oximetry 6.5.4. Saturation Transfer

https://doi.org/10.1002/14356007.b05_471