6533b836fe1ef96bd12a09a3
RESEARCH PRODUCT
Burrows-Wheeler transform and Run-Length Enconding
Sabrina MantaciMarinella SciortinoAntonio RestivoGiovanna Rosonesubject
Discrete mathematicsRational numberBurrows–Wheeler transformComputer scienceComputer Science (all)0102 computer and information sciences02 engineering and technologyBurrows-Wheeler transform01 natural sciencesBurrows-Wheeler transform; Clustering effect; Run-length encoding; Theoretical Computer Science; Computer Science (all)Theoretical Computer ScienceClustering effect010201 computation theory & mathematicsRun-length encoding0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingCluster analysisWord (computer architecture)Run-length encodingdescription
In this paper we study the clustering effect of the Burrows-Wheeler Transform (BWT) from a combinatorial viewpoint. In particular, given a word w we define the BWT-clustering ratio of w as the ratio between the number of clusters produced by BWT and the number of the clusters of w. The number of clusters of a word is measured by its Run-Length Encoding. We show that the BWT-clustering ratio ranges in ]0, 2]. Moreover, given a rational number \(r\,\in \,]0,2]\), it is possible to find infinitely many words having BWT-clustering ratio equal to r. Finally, we show how the words can be classified according to their BWT-clustering ratio. The behavior of such a parameter is studied for very well-known families of binary words.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 |