6533b837fe1ef96bd12a1f8d

RESEARCH PRODUCT

Counterdiabatic vortex pump in spinor Bose-Einstein condensates

Mikio NakaharaMikko MöttönenTuomas OllikainenShumpei Masuda

subject

Angular momentumalkali metalsQuantum controlFOS: Physical sciences01 natural sciencestopological phase imprinting010305 fluids & plasmaslaw.inventionlawQuantum mechanics0103 physical sciences010306 general physicsAdiabatic processPhysicsCondensed Matter::Quantum GasesSpinorta114Winding numberBose-Einstein condensatesVortexNumerical integrationvortex pumpsQuantum Gases (cond-mat.quant-gas)Condensed Matter - Quantum GasesBose–Einstein condensatealkalimetallit

description

Topological phase imprinting is a well-established technique for deterministic vortex creation in spinor Bose-Einstein condensates of alkali metal atoms. It was recently shown that counter-diabatic quantum control may accelerate vortex creation in comparison to the standard adiabatic protocol and suppress the atom loss due to nonadiabatic transitions. Here we apply this technique, assisted by an optical plug, for vortex pumping to theoretically show that sequential phase imprinting up to 20 cycles generates a vortex with a very large winding number. Our method significantly increases the fidelity of the pump for rapid pumping compared to the case without the counter-diabatic control, leading to the highest angular momentum per particle reported to date for the vortex pump. Our studies are based on numerical integration of the three-dimensional multi-component Gross-Pitaevskii equation which conveniently yields the density profiles, phase profiles, angular momentum, and other physically important quantities of the spin-1 system. Our results motivate the experimental realization of the vortex pump and studies of the rich physics it involves.

10.1103/physreva.95.013615https://doi.org/10.1103/PhysRevA.95.013615