6533b838fe1ef96bd12a3ed5

RESEARCH PRODUCT

Deformation and failure of MXene nanosheets

Gediminas MonastyreckisDaiva ZeleniakienėAndrey AniskevichPaulius Griskevicius

subject

Materials science02 engineering and technology010402 general chemistrylcsh:Technology01 natural sciencesArticleMonolayermedicineGeneral Materials ScienceComposite materiallcsh:Microscopylcsh:QC120-168.85Strain energy release ratelcsh:QH201-278.5lcsh:TTension (physics)MXene; mechanical behavior; finite element modelingStiffnessfinite element modelingNanoindentation021001 nanoscience & nanotechnologyFinite element method0104 chemical sciencesShear (sheet metal)lcsh:TA1-2040mechanical behaviorlcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringDeformation (engineering)medicine.symptomlcsh:Engineering (General). Civil engineering (General)0210 nano-technologyMXenelcsh:TK1-9971

description

This work is aimed at the development of finite element models and prediction of the mechanical behavior of MXene nanosheets. Using LS-Dyna Explicit software, a finite element model was designed to simulate the nanoindentation process of a two-dimensional MXene Ti3C2Tz monolayer flake and to validate the material model. For the evaluation of the adhesive strength of the free-standing Ti3C2Tz-based film, the model comprised single-layered MXene nanosheets with a specific number of individual flakes, and the reverse engineering method with a curve fitting approach was used. The interlaminar shear strength, in-plane stiffness, and shear energy release rate of MXene film were predicted using this approach. The results of the sensitivity analysis showed that interlaminar shear strength and in-plane stiffness have the largest influence on the mechanical behavior of MXene film under tension, while the shear energy release rate mainly affects the interlaminar damage properties of nanosheets.

10.3390/ma13051253https://vb.ktu.edu/KTU:ELABAPDB53195780&prefLang=en_US