6533b839fe1ef96bd12a5a2b
RESEARCH PRODUCT
The cup product of Hilbert schemes for K3 surfaces
Manfred LehnChristoph Sorgersubject
Discrete mathematicsSurface (mathematics)Hilbert series and Hilbert polynomialSequencePure mathematicsMathematics::Commutative AlgebraGeneral Mathematics010102 general mathematics01 natural sciencesCanonical bundlesymbols.namesakeHilbert schemeCup product0103 physical sciencesFrobenius algebrasymbols[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]010307 mathematical physicsIsomorphism0101 mathematicsComputingMilieux_MISCELLANEOUSMathematicsdescription
To any graded Frobenius algebra A we associate a sequence of graded Frobenius algebras A [n] so that there is canonical isomorphism of rings (H *(X;ℚ)[2]) [n] ≅H *(X [n] ;ℚ)[2n] for the Hilbert scheme X [n] of generalised n-tuples of any smooth projective surface X with numerically trivial canonical bundle.
year | journal | country | edition | language |
---|---|---|---|---|
2003-05-01 | Inventiones Mathematicae |