0000000000298186

AUTHOR

Manfred Lehn

showing 4 related works from this author

Generalized twisted cubics on a cubic fourfold as a moduli space of stable objects

2016

We revisit the work of Lehn-Lehn-Sorger-van Straten on twisted cubic curves in a cubic fourfold not containing a plane in terms of moduli spaces. We show that the blow-up $Z'$ along the cubic of the irreducible holomorphic symplectic eightfold $Z$, described by the four authors, is isomorphic to an irreducible component of a moduli space of Gieseker stable torsion sheaves or rank three torsion free sheaves. For a very general such cubic fourfold, we show that $Z$ is isomorphic to a connected component of a moduli space of tilt-stable objects in the derived category and to a moduli space of Bridgeland stable objects in the Kuznetsov component. Moreover, the contraction between $Z'$ and $Z$ i…

Connected componentDerived categoryPure mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsHolomorphic function01 natural sciencesModuli spaceMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesTorsion (algebra)FOS: Mathematics010307 mathematical physics0101 mathematicsMathematics::Representation TheoryMathematics::Symplectic GeometryAlgebraic Geometry (math.AG)Irreducible componentTwisted cubicMathematicsSymplectic geometry
researchProduct

La singularité de O’Grady

2006

Let M 2 v M_{2v} be the moduli space of semistable sheaves with Mukai vector 2 v 2v on an abelian or K 3 K3 surface where v v is primitive such that ⟨ v , v ⟩ = 2 \langle v,v \rangle =2 . We show that the blow-up of the reduced singular locus of M 2 v M_{2v} provides a symplectic resolution of singularities. This provides a direct description of O’Grady’s resolutions of M K 3 ( 2 , 0 , 4 ) M_{K3}(2,0,4) and M A b ( 2 , 0 , 2 ) M_{Ab}(2,0,2) . Résumé. Soit M 2 v M_{2v} l’espace de modules des faisceaux semi-stables de vecteur de Mukai 2 v 2v sur une surface K 3 K3 ou abélienne où v v est primitif tel que ⟨ v , v ⟩ = 2 \langle v,v \rangle =2 . Nous montrons que l’éclatement de M 2 v M_{2v} le…

Pure mathematicsAlgebra and Number TheoryMathematical analysisResolution of singularitiesGeometry and TopologyAbelian groupLocus (mathematics)MathematicsK3 surfaceSymplectic geometryModuli spaceJournal of Algebraic Geometry
researchProduct

On the stability of flat complex vector bundles over parallelizable manifolds

2017

We investigate the flat holomorphic vector bundles over compact complex parallelizable manifolds $G / \Gamma$, where $G$ is a complex connected Lie group and $\Gamma$ is a cocompact lattice in it. The main result proved here is a structure theorem for flat holomorphic vector bundles $E_\rho$ associated to any irreducible representation $\rho : \Gamma \rightarrow \text{GL}(r,{\mathbb C})$. More precisely, we prove that $E_{\rho}$ is holomorphically isomorphic to a vector bundle of the form $E^{\oplus n}$, where $E$ is a stable vector bundle. All the rational Chern classes of $E$ vanish, in particular, its degree is zero. We deduce a stability result for flat holomorphic vector bundles $E_{\r…

Mathematics - Differential GeometryPure mathematicsParallelizable manifoldChern class010102 general mathematicsHolomorphic functionVector bundleLie groupGeneral MedicineStable vector bundle01 natural sciences53B21 53C56 53A55010101 applied mathematicsMathematics - Algebraic GeometryDifferential Geometry (math.DG)Irreducible representationFOS: Mathematics0101 mathematicsAlgebraic Geometry (math.AG)Mathematics::Symplectic GeometryQuotientMathematicsComptes Rendus Mathematique
researchProduct

The cup product of Hilbert schemes for K3 surfaces

2003

To any graded Frobenius algebra A we associate a sequence of graded Frobenius algebras A [n] so that there is canonical isomorphism of rings (H *(X;ℚ)[2]) [n] ≅H *(X [n] ;ℚ)[2n] for the Hilbert scheme X [n] of generalised n-tuples of any smooth projective surface X with numerically trivial canonical bundle.

Discrete mathematicsSurface (mathematics)Hilbert series and Hilbert polynomialSequencePure mathematicsMathematics::Commutative AlgebraGeneral Mathematics010102 general mathematics01 natural sciencesCanonical bundlesymbols.namesakeHilbert schemeCup product0103 physical sciencesFrobenius algebrasymbols[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]010307 mathematical physicsIsomorphism0101 mathematicsComputingMilieux_MISCELLANEOUSMathematicsInventiones Mathematicae
researchProduct