6533b7defe1ef96bd127653d
RESEARCH PRODUCT
La singularité de O’Grady
Christoph SorgerManfred Lehnsubject
Pure mathematicsAlgebra and Number TheoryMathematical analysisResolution of singularitiesGeometry and TopologyAbelian groupLocus (mathematics)MathematicsK3 surfaceSymplectic geometryModuli spacedescription
Let M 2 v M_{2v} be the moduli space of semistable sheaves with Mukai vector 2 v 2v on an abelian or K 3 K3 surface where v v is primitive such that ⟨ v , v ⟩ = 2 \langle v,v \rangle =2 . We show that the blow-up of the reduced singular locus of M 2 v M_{2v} provides a symplectic resolution of singularities. This provides a direct description of O’Grady’s resolutions of M K 3 ( 2 , 0 , 4 ) M_{K3}(2,0,4) and M A b ( 2 , 0 , 2 ) M_{Ab}(2,0,2) . Résumé. Soit M 2 v M_{2v} l’espace de modules des faisceaux semi-stables de vecteur de Mukai 2 v 2v sur une surface K 3 K3 ou abélienne où v v est primitif tel que ⟨ v , v ⟩ = 2 \langle v,v \rangle =2 . Nous montrons que l’éclatement de M 2 v M_{2v} le long de son lieu singulier réduit fournit une résolution symplectique des singularités. Ceci donne une description directe des résolutions de O’Grady de M K 3 ( 2 , 0 , 4 ) M_{K3}(2,0,4) et M A b ( 2 , 0 , 2 ) M_{Ab}(2,0,2) .
year | journal | country | edition | language |
---|---|---|---|---|
2006-05-24 | Journal of Algebraic Geometry |