0000000000427174

AUTHOR

Christoph Sorger

showing 2 related works from this author

La singularité de O’Grady

2006

Let M 2 v M_{2v} be the moduli space of semistable sheaves with Mukai vector 2 v 2v on an abelian or K 3 K3 surface where v v is primitive such that ⟨ v , v ⟩ = 2 \langle v,v \rangle =2 . We show that the blow-up of the reduced singular locus of M 2 v M_{2v} provides a symplectic resolution of singularities. This provides a direct description of O’Grady’s resolutions of M K 3 ( 2 , 0 , 4 ) M_{K3}(2,0,4) and M A b ( 2 , 0 , 2 ) M_{Ab}(2,0,2) . Résumé. Soit M 2 v M_{2v} l’espace de modules des faisceaux semi-stables de vecteur de Mukai 2 v 2v sur une surface K 3 K3 ou abélienne où v v est primitif tel que ⟨ v , v ⟩ = 2 \langle v,v \rangle =2 . Nous montrons que l’éclatement de M 2 v M_{2v} le…

Pure mathematicsAlgebra and Number TheoryMathematical analysisResolution of singularitiesGeometry and TopologyAbelian groupLocus (mathematics)MathematicsK3 surfaceSymplectic geometryModuli spaceJournal of Algebraic Geometry
researchProduct

The cup product of Hilbert schemes for K3 surfaces

2003

To any graded Frobenius algebra A we associate a sequence of graded Frobenius algebras A [n] so that there is canonical isomorphism of rings (H *(X;ℚ)[2]) [n] ≅H *(X [n] ;ℚ)[2n] for the Hilbert scheme X [n] of generalised n-tuples of any smooth projective surface X with numerically trivial canonical bundle.

Discrete mathematicsSurface (mathematics)Hilbert series and Hilbert polynomialSequencePure mathematicsMathematics::Commutative AlgebraGeneral Mathematics010102 general mathematics01 natural sciencesCanonical bundlesymbols.namesakeHilbert schemeCup product0103 physical sciencesFrobenius algebrasymbols[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]010307 mathematical physicsIsomorphism0101 mathematicsComputingMilieux_MISCELLANEOUSMathematicsInventiones Mathematicae
researchProduct