6533b839fe1ef96bd12a5b8e

RESEARCH PRODUCT

General treatment of vortical, toroidal, and compression modes

J. KvasilW. KleinigV. O. NesterenkoPaul-gerhard ReinhardP. Vesely

subject

PhysicsConvectionNuclear and High Energy PhysicsToroidNuclear Theoryta114IsovectorIsoscalarNuclear TheoryFOS: Physical sciencesVorticityNuclear Theory (nucl-th)Physics::Fluid DynamicsClassical mechanicsCondensed Matter::SuperconductivityCompression (functional analysis)Quantum electrodynamicsNuclear Experiment (nucl-ex)Multipole expansionRandom phase approximationNuclear Experiment

description

The multipole vortical, toroidal, and compression modes are analyzed. Following the vorticity concept of Ravenhall and Wambach, the vortical operator is derived and related in a simple way to the toroidal and compression operators. The strength functions and velocity fields of the modes are analyzed in $^{208}$Pb within the random-phase-approximation using the Skyrme force SLy6. Both convection and magnetization nuclear currents are taken into account. It is shown that the isoscalar (isovector) vortical and toroidal modes are dominated by the convection (magnetization) nuclear current while the compression mode is fully convective. The relation between the above concept of the vorticity to the hydrodynamical vorticity is briefly discussed.

https://doi.org/10.1103/physrevc.84.034303