6533b839fe1ef96bd12a5cae

RESEARCH PRODUCT

Synthesis and antimicrobial activity of new 3-(1-R-3(5)-methyl-4-nitroso-1H-5(3)-pyrazolyl)-5-methylisoxazoles.

Maria Elena MarongiuGiancarlo PelizziEnrico AielloFrancesco MingoiaStefania AielloMaria Giovanna SetzuPaolo La CollaAlessandra PaniAlessia BacchiChiara Musiu

subject

Antifungal AgentsStereochemistryClinical BiochemistryPharmaceutical ScienceMicrobial Sensitivity TestsPyrazoleGram-Positive BacteriaBiochemistryChemical synthesischemistry.chemical_compoundStructure-Activity RelationshipAnti-Infective AgentsDrug DiscoveryGram-Negative BacteriamedicineMoietyHumansCytotoxicityMolecular BiologyChemistryOrganic ChemistryFungiNitrosoIsoxazolesAntimicrobialAnti-Bacterial AgentsLipophilicityCryptococcus neoformansHIV-1Molecular MedicineMiconazolemedicine.drug

description

A number of new 3-(1-R-3(5)-methyl-4-nitroso-1H-5(3)-pyrazolyl)-5-methylisoxazoles 6a-g (7b-f) were synthesized and tested for antibacterial and antifungal activity. Some of these compounds displayed antifungal activity at non-cytotoxic concentrations. Derivative 6c was 9 times more potent in vitro than miconazole and 20 times more selective against C. neoformans. 6c was also 8- and 125-fold more potent than amphotericin B and fluconazole, respectively. None of the compounds was active against bacteria. Preliminary structure-activity relationship (SAR) studies showed that the NO group at position 4 of the pyrazole ring is essential for the activity. Lipophilicity of the pyrazole moiety, N-alkyl chain length and planarity of the two heterocyclic rings appear to play a decisive role in modulating cytotoxicity and antifungal activity.

10.1016/s0968-0896(00)00211-xhttps://pubmed.ncbi.nlm.nih.gov/11131163