6533b83afe1ef96bd12a70cc

RESEARCH PRODUCT

Injection Molding and Mechanical Properties of Bio-Based Polymer Nanocomposites

Francesco Paolo La MantiaMarco MorrealeMaria Chiara MistrettaManuela CerauloSebastiano RificiLuigi Botta

subject

Materials sciencePolymer nanocompositeinjection molding02 engineering and technology010402 general chemistry01 natural scienceslcsh:TechnologyArticleprocessing; injection molding; biodegradable polymers; nanocompositeschemistry.chemical_compoundRheologyBiodegradable polymernanocompositesBiodegradable polymers; Injection molding; Nanocomposites; ProcessingGeneral Materials Sciencelcsh:Microscopylcsh:QC120-168.85chemistry.chemical_classificationNanocompositeNanocompositelcsh:QH201-278.5lcsh:TPolymerPolyethylene021001 nanoscience & nanotechnologyBiodegradable polymer0104 chemical sciencesMolding (decorative)Chemical engineeringchemistrylcsh:TA1-2040biodegradable polymersprocessinglcsh:Descriptive and experimental mechanicsHigh-density polyethylenelcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971

description

The use of biodegradable/bio-based polymers is of great importance in addressing several issues related to environmental protection, public health, and new, stricter legislation. Yet some applications require improved properties (such as barrier or mechanical properties), suggesting the use of nanosized fillers in order to obtain bio-based polymer nanocomposites. In this work, bionanocomposites based on two different biodegradable polymers (coming from the Bioflex and MaterBi families) and two different nanosized fillers (organo-modified clay and hydrophobic-coated precipitated calcium carbonate) were prepared and compared with traditional nanocomposites with high-density polyethylene (HDPE) as matrix. In particular, the injection molding processability, as well as the mechanical and rheological properties of the so-obtained bionanocomposites were investigated. It was found that the processability of the two biodegradable polymers and the related nanocomposites can be compared to that of the HDPE-based systems and that, in general, the bio-based systems can be taken into account as suitable alternatives.

10.3390/ma11040613http://www.mdpi.com/1996-1944/11/4/613