6533b83afe1ef96bd12a71f1

RESEARCH PRODUCT

Matrix algebras of polynomial codimension growth

D. La MattinaV. M. PetrogradskyAntonio Giambruno

subject

Discrete mathematicsPure mathematicsJordan algebraGeneral MathematicsNon-associative algebraSubalgebraUniversal enveloping algebraCodimensionMatrix polynomialQuadratic algebraSettore MAT/02 - AlgebraAlgebra representationpolynomial identity codimensions growthMathematics

description

We study associative algebras with unity of polynomial codimension growth. For any fixed degree $k$ we construct associative algebras whose codimension sequence has the largest and the smallest possible polynomial growth of degree $k$. We also explicitly describe the identities and the exponential generating functions of these algebras.

10.1007/s11856-007-0017-7http://hdl.handle.net/10447/9038