6533b83afe1ef96bd12a7936

RESEARCH PRODUCT

Glutathione metabolism in skeletal muscle derived cells of the L6 line

C. K. SenO. HänninenP. Rahkila

subject

AntioxidantGPX3AntimetabolitesPhysiologymedicine.medical_treatmentGlutathione reductaseBiologyCell Linechemistry.chemical_compoundtert-ButylhydroperoxideMethionine SulfoximinemedicineAnimalsMyocyteInhibinsButhionine SulfoximineAcivicinGlutathione TransferaseMusclesSkeletal muscleGlutathioneMetabolismGlutathioneActivinsPeroxidesRatsmedicine.anatomical_structureBiochemistrychemistryEnergy Metabolism

description

Skeletal muscle derived L6 myoblasts possess a considerably high resting total glutathione (TGSH) pool. Exposure to L-buthionine-[S,R]-sulphoximine resulted in a 90% depletion of the intracellular TGSH pool. All the key enzymes of glutathione metabolism, especially glutathione S-transferase, were observed to be considerably active in the undifferentiated cells. Se-dependent glutathione peroxidase activity appeared to account for most of the total GSH peroxidase activity of the cells. A significant contribution of gamma-glutamyl transpeptidase-independent (5 mM acivicin insensitive) mechanism to the extracellular GSH uptake capacity of the muscle cells was evident. Efflux of oxidized glutathione from the cells exposed to t-butyl hydroperoxide was rapid and appeared to be energy linked.

https://doi.org/10.1111/j.1748-1716.1993.tb09527.x