6533b851fe1ef96bd12a9934

RESEARCH PRODUCT

Testing a theoretical resistance law for overland flow under simulated rainfall with different types of vegetation

C. Di StefanoMark A. NearingAlessio NicosiaVincenzo PampaloneVito FerroViktor O. PolyakovVincenzo Palmeri

subject

Dimensional analysi010504 meteorology & atmospheric sciencesSoil science01 natural sciencessymbols.namesakeWetted perimeterVelocity profileFroude numbermedicineSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliVegetable cover0105 earth and related environmental sciencesEarth-Surface ProcessesReynolds numberLaminar flow04 agricultural and veterinary sciencesOpen channel flowOpen-channel flowSelf-similarityFlow (mathematics)Flow velocityFlow resistance040103 agronomy & agriculturesymbolsRainfall simulationSoil erosion0401 agriculture forestry and fisheriesEnvironmental sciencemedicine.symptomVegetation (pathology)

description

Abstract In this paper a recently theoretically deduced flow resistance equation, based on a power-velocity profile, was tested using data collected for overland flow under simulated rainfall carried out in plots with vegetation. The available data were obtained exploring a wide range of rainfall intensities (from 60 to 181 mm h−1) and slopes (from 3.6 to 39.6%), and with four different types of vegetation. The database, including measurements of flow velocity, water depth, cross sectional flow area, wetted perimeter and bed slope, was divided in four datasets (one for each vegetation type), which allowed the calibration of the relationship between the velocity profile parameter Γ, the slope steepness, the flow Froude number, and the rainfall Reynolds number. The effect of rainfall intensity and different types of vegetation on flow resistance was investigated. The results showed that the theoretically deduced flow resistance equation allowed an accurate estimate of the Darcy-Weisbach friction factor for overland flow under simulated rainfall and in presence of vegetation. The developed analysis also suggested that flow resistance increases with rainfall intensity for laminar overland flow. The available data demonstrated that a quasi-independence between slope and mean velocity occurred. Finally, a single flow resistance equation resulted applicable to all investigated vegetation types and this equation was affected by flow regime represented by flow Reynolds number.

10.1016/j.catena.2020.104482http://hdl.handle.net/10447/398169