6533b852fe1ef96bd12aaad3
RESEARCH PRODUCT
Three-dimensional mapping of the B 1 field using an optimized phase-based method: Application to hyperpolarized 3 He in lungs
J. RivoireK. K. GastZahir SalhiMaxim TerekhovLaura M. SchreiberFlorian M. MeiseDavide Santorosubject
Materials sciencePulse (signal processing)business.industryPhase anglePhase (waves)Pulse sequenceImaging phantomNuclear magnetic resonanceOpticsFlip angleRadiology Nuclear Medicine and imagingSensitivity (control systems)businessExcitationdescription
A novel method is presented for the three-dimensional mapping of the B1-field of a transmit radio-frequency MR coil. The method is based on the acquisition of phase images, where the effective flip angle is encoded in the phase of the nonselective hard pulse excitation. The method involves the application of a rectangular composite pulse as excitation in a three-dimensional gradient recall echo to produce measurable phase angle variation. However, such a pulse may significantly increase the radio-frequency power deposition in excess of the standard acceptable SAR limits, imposing extremely long TRs (>100 msec), which would result in acquisition times significantly greater than a single breath-hold. In this study, the phases of the radio-frequency excitation are modified, resulting in a different pulse sequence scheme. It is shown that the new method increases sensitivity with respect to radio-frequency inhomogeneities by up to 10 times, and reduces the total duration of the pulse so that three-dimensional B1 mapping is possible with 3He in lungs within a single breath-hold. Computer simulations demonstrate the increase in sensitivity. Phantom results with 1H MRI are used for validation. In vivo results are presented with hyperpolarized 3He in human lungs at 1.5T. Magn Reson Med, 2010. © 2010 Wiley-Liss, Inc.
year | journal | country | edition | language |
---|---|---|---|---|
2010-11-04 | Magnetic Resonance in Medicine |