6533b852fe1ef96bd12aadce
RESEARCH PRODUCT
An In Vitro Phantom Study on the Role of the Bird-Beak Configuration in Endograft Infolding in the Aortic Arch.
Francesco ScardullaGiuseppe D'anconaGiuseppe Maria RaffaAntonino RinaudoMichele PilatoSalvatore PastaCesare Scardullasubject
Aortic archModels AnatomicRadiology Nuclear Medicine and ImagingTime FactorsFlow modelPulsatile flowEndograftStent-graft oversizingAorta Thoracic030204 cardiovascular system & hematologyRotation0302 clinical medicineForeign-Body MigrationStentThoracic aortaBird-beak configurationmedicine.diagnostic_testEndovascular ProceduresGraft Occlusion VascularModels CardiovascularAnatomyIn vitro experimentProsthesis FailureBlood Vessel ProsthesiTreatment OutcomePulsatile FlowPatient-specific modelStentsCardiology and Cardiovascular MedicineHumanAortographyTime FactorThoracic endovascular aortic repairProsthesis DesignAortographyImaging phantom03 medical and health sciencesBlood Vessel Prosthesis ImplantationBlood vessel prosthesismedicine.arterymedicineHumansDisplacement (orthopedic surgery)HemodynamicEndovascular Procedurebusiness.industryHemodynamicsDisplacementStent-graft infoldingBlood Vessel ProsthesisSurgerybusinessTomography X-Ray Computed030217 neurology & neurosurgeryStent-graft collapsedescription
Purpose: To assess endograft infolding for excessive bird-beak configurations in the aortic arch in relation to hemodynamic variables by quantifying device displacement and rotation of oversized stent-grafts deployed in a phantom model. Methods: A patient-specific, compliant, phantom pulsatile flow model was reconstructed from a patient who presented with collapse of a Gore TAG thoracic endoprosthesis. Device infolding was measured under different flow and pressure conditions for 3 protrusion extensions (13, 19, and 24 mm) of the bird-beak configuration resulting from 2 TAG endografts with oversizing of 11% and 45%, respectively. Results: The bird-beak configuration with the greatest protrusion extension exhibited the maximum TAG device displacement (1.66 mm), while the lowest protrusion extension configuration led to the minimum amount of both displacement and rotation parameters (0.25 mm and 0.6°, respectively). A positive relationship was found between the infolding parameters and the flow circulating in the aorta and left subclavian artery. Similarly, TAG device displacement was positively and significantly (p<0.05) correlated with the pulse pressure for all bird-beak configurations and device sizes. However, no collapse was observed under chronic perfusion testing maintained for 30 days and pulse pressure of 100 mm Hg. Conclusion: These findings suggest that endograft infolding depends primarily on the amount of aortic pulsatility and flow rate and that physiological flows do not necessarily engender hemodynamic loads on the proximal bird-beak segment sufficient to cause TAG collapse. Hemodynamic variables may allow for identification of patients at high risk of endograft infolding and help guide preventive intervention to avert its occurrence.
year | journal | country | edition | language |
---|---|---|---|---|
2015-10-23 | Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists |