6533b854fe1ef96bd12af480

RESEARCH PRODUCT

The effect of polycations on early cement paste

Christophe LabbezAndré NonatHeiki VijaIsabelle PochardBo Jönsson

subject

Materials scienceBridging forceIonic bonding02 engineering and technology010402 general chemistry01 natural sciencesOligomerchemistry.chemical_compoundPolymers (D.)General Materials ScienceComposite materialCalcium silicate hydratechemistry.chemical_classificationCement paste (D.)Cationic polymerizationBuilding and ConstructionPolymer021001 nanoscience & nanotechnologyTensile properties (C.)0104 chemical sciences[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]MonomerchemistryChemical engineeringPolymerization[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Cementitious0210 nano-technology

description

International audience; This paper studies the possibility for improving the ductility of cement based materials by means of oligocationic additives. Actually, the setting of cement is due to ionic correlation forces between highly negatively charged C-S-H nanoparticles throughout a calcium rich solution. The main drawback of this strong attraction is its very short range that results in low elastic deformation of hydrated cementitious materials. A way to enlarge the attraction range between C-S-H particles would be to add cationic oligomers that would compete with calcium ions modifying the ionic correlation forces via a bridging mechanism of longer range, which could lead to a more ductile material. The studied parameters were the polymerization degree, the separation distance between the charged monomers and the balance between oligocations and monovalent and divalent cations in the solution. The results, both experimental and numerical by Monte Carlo (MC) simulations, demonstrate that cationic oligomers can compete with calcium cations as counterions to the C-S-H surface. The cohesive forces between C-S-H surfaces, calculated by MC simulations, show an interesting behaviour where range and magnitude can be tuned with oligomer concentration, polymerization degree and line charge density. Thus, it seems possible to modulate the ductility and critical strain of cement by addition of cationic oligomers.

https://hal.archives-ouvertes.fr/hal-00496959