6533b855fe1ef96bd12afe9c
RESEARCH PRODUCT
Epigenetic Regulation of Early- and Late-Response Genes in Acute Pancreatitis
José L. RodríguezJavier PeredaLuis FrancoAzahara Vallet-sánchezJuan SandovalIsabela FinamorSalvador PérezGerardo López-rodasJuan Sastresubject
Taurocholic AcidTranscriptional Activation0301 basic medicineChromatin ImmunoprecipitationImmunologyAcinar CellsBiologyMethylationChromatin remodelingEpigenesis GeneticHistones03 medical and health sciences0302 clinical medicineHistone methylationAnimalsImmunology and AllergyNucleosomeEpigeneticsPromoter Regions GeneticEarly Growth Response Protein 1Histone AcetyltransferasesInflammationPancreatitis Acute NecrotizingTumor Necrosis Factor-alphaDNA HelicasesNuclear ProteinsAcetylationHistone acetyltransferaseChromatin Assembly and DisassemblyRatsChromatin030104 developmental biologyHistoneGene Expression Regulation030220 oncology & carcinogenesisbiology.proteinCancer researchProtein Processing Post-TranslationalChromatin immunoprecipitationTranscription Factorsdescription
Abstract Chromatin remodeling seems to regulate the patterns of proinflammatory genes. Our aim was to provide new insights into the epigenetic mechanisms that control transcriptional activation of early- and late-response genes in initiation and development of severe acute pancreatitis as a model of acute inflammation. Chromatin changes were studied by chromatin immunoprecipitation analysis, nucleosome positioning, and determination of histone modifications in promoters of proinflammatory genes in vivo in the course of taurocholate-induced necrotizing pancreatitis in rats and in vitro in rat pancreatic AR42J acinar cells stimulated with taurocholate or TNF-α. Here we show that the upregulation of early and late inflammatory genes rely on histone acetylation associated with recruitment of histone acetyltransferase CBP. Chromatin remodeling of early genes during the inflammatory response in vivo is characterized by a rapid and transient increase in H3K14ac, H3K27ac, and H4K5ac as well as by recruitment of chromatin-remodeling complex containing BRG-1. Chromatin remodeling in late genes is characterized by a late and marked increase in histone methylation, particularly in H3K4. JNK and p38 MAPK drive the recruitment of transcription factors and the subsequent upregulation of early and late inflammatory genes, which is associated with nuclear translocation of the early gene Egr-1. In conclusion, specific and strictly ordered epigenetic markers such as histone acetylation and methylation, as well as recruitment of BRG-1–containing remodeling complex are associated with the upregulation of both early and late proinflammatory genes in acute pancreatitis. Our findings highlight the importance of epigenetic regulatory mechanisms in the control of the inflammatory cascade.
year | journal | country | edition | language |
---|---|---|---|---|
2015-11-13 | The Journal of Immunology |