6533b856fe1ef96bd12b1c1a

RESEARCH PRODUCT

Role of photoactive layer morphology in high fill factor all-polymer bulk heterojunction solar cells

Bruno PignataroMaria LoiSimone FabianoAntonio FacchettiZhihua ChenSina Vahedi

subject

DYNAMICSElectron mobilityMaterials scienceFullerenePHOTOVOLTAIC DEVICESLIGHT-INTENSITY DEPENDENCEBLENDSPolymer solar cellPhotoactive layerMaterials ChemistryThin filmSettore CHIM/02 - Chimica FisicaOpen-circuit voltagebusiness.industryORIGINPOLY(3-HEXYLTHIOPHENE)General ChemistryHybrid solar cellAcceptorTRANSPORTOPEN-CIRCUIT VOLTAGEsolar cells bulk heterojunctions devices organic electronicsTRANSISTORSOptoelectronicsbusinessCONJUGATED POLYMERS

description

We report on the realization of all-polymer solar cells based on blends of poly(3-hexylthiophene-2,5-diyl) (P3HT) as a donor and poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)) as an acceptor. High fill factors are demonstrated for the first time in this class of devices suggesting high dissociation efficiency for the bounded electron-hole pairs and balanced electron and hole mobility along the thin films. The use of the high-mobility n-type P(NDI2OD-T2) polymer enables us to overcome one of the problems limiting the efficiency of all-polymer solar cells, resulting in fill factors comparable with those reported for fullerene-based devices.

10.1039/c0jm03405chttp://hdl.handle.net/10447/59970