Search results for "TRANSISTORS"

showing 10 items of 68 documents

Silicon dosimeters based on Floating Gate Sensor: design, implementation and characterization

2020

A rad-hard monolithic dosimeter has been implemented and characterized in a standard 180 nm CMOS technology. The radiation sensor (C-sensor) is based on a Floating Gate (FG) MOS discharge principle. The output current is processed by a current-to-voltage (I/V) interface and then converted by a 5-bit flash ADC. The dosimeter is re-usable (FG can be recharged) and can detect a dose up to 1krad (Si) with a resolution of 30rad (Si) typical over temperature 0 to 85°C range. The ADC allows easy further signal processing for calibration and averaging, etc. The power consumption of C-sensor plus I/V interface is < 2mW from a 5 V power supply. The overall layout area is less than 0.25mm2. The Rad…

010302 applied physicsSignal processingMaterials scienceDosimeterSettore ING-IND/20 - Misure E Strumentazione Nucleari010308 nuclear & particles physicsbusiness.industryAnalog-to-digital converterHardware_PERFORMANCEANDRELIABILITYFlash ADC01 natural sciencesPower (physics)law.inventionCMOSlawAnalog-to-Digital converter current-to-voltage interfaces Dosimeter edgeless transistors (ELT) Floating Gate MOS radiation hardening by design (RHBD) total ionizing dose (TID)Absorbed dose0103 physical sciencesHardware_INTEGRATEDCIRCUITSCalibrationOptoelectronicsbusiness2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)
researchProduct

Mapping brain activity with flexible graphene micro-transistors

2016

arXiv:1611.05693v1.-- et al.

0301 basic medicineMaterials scienceFOS: Physical sciences02 engineering and technologylaw.invention03 medical and health scienceslawGeneral Materials ScienceElectronicsPhysics - Biological PhysicsNeural implantsBioelectronicsBioelectronicsbusiness.industryGrapheneSensorsMechanical EngineeringTransistorGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsField-effect transistorsMicroelectrodeBrain implant030104 developmental biologyBiological Physics (physics.bio-ph)Mechanics of MaterialsFOS: Biological sciencesQuantitative Biology - Neurons and CognitionOptoelectronicsNeurons and Cognition (q-bio.NC)Charge carrierField-effect transistorGraphene0210 nano-technologybusiness2D Materials
researchProduct

Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a boron dipyrromethene …

2014

[EN] A novel colorimetric probe (P4) for the selective differential detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) was prepared. Probe P4 contains three reactive sites; i.e. (i) a nucleophilic phenol group able to undergo phosphorylation with nerve gases, (ii) a carbonyl group as a reactive site for cyanide; and (iii) a triisopropylsilyl (TIPS) protecting group that is known to react with fluoride. The reaction of P4 with DCNP in acetonitrile resulted in both the phosphorylation of the phenoxy group and the release of cyanide, which was able to react with the carbonyl group of P4 to produce a colour modulation from pink to orange. In contrast, phosphorylation of P4 with…

Boron CompoundsSarinORGANOPHOSPHATE PESTICIDESAcetonitrilesCyanideSomanColorSilica GelNERVE AGENTSCHEMICAL WARFARE AGENTSBiochemistryACETYLCHOLINESTERASESubstrate Specificitychemistry.chemical_compoundQUIMICA ORGANICALimit of DetectionSomanmedicineSENSORSNANOPARTICLESPhenolOrganic chemistryHumansChemical Warfare AgentsPhysical and Theoretical ChemistryPhosphorylationProtecting groupTabunNerve agentLANTHANIDE IONSReagent StripsRHODAMINE-BOrganic ChemistryQUIMICA INORGANICAMolecular MimicryMembranes ArtificialSarinOrganophosphatesFLUORESCENTchemistryMolecular ProbesSolventsColorimetryBODIPYFIELD-EFFECT TRANSISTORSNuclear chemistrymedicine.drugOrganicbiomolecular chemistry
researchProduct

Influence of device geometry on sensor characteristics of planar organic electrochemical transistors.

2009

The response of PEDOT:PSS planar electrochemical transistors to H2O2 can be tuned by varying the ratio between the areas of the channel and the gate electrode. Devices with small gates show lower background signal and higher sensitivity. The detection range, on the other hand, is found to be rather independent of the gate/channel area ratio.

Conductive polymerOrganic electronicsMaterials scienceTransistors Electronicbusiness.industryMechanical EngineeringTransistorEquipment Designlaw.inventionEquipment Failure AnalysisPlanarPEDOT:PSSMechanics of MaterialslawElectrodeElectrochemistryOptoelectronicsGeneral Materials ScienceOrganic ChemicalsbusinessSensitivity (electronics)ElectrodesOrganic electrochemical transistorAdvanced materials (Deerfield Beach, Fla.)
researchProduct

A DC and small signal AC model for organic thin film transistors including contact effects and non quasi static regime

2017

Abstract We present a compact model for the DC and small signal AC analysis of Organic Thin Film Transistors (OTFTs). The DC part of the model assumes that the electrical current injected in the OTFT is limited by the presence of a metal/organic semiconductor junction that, at source, acts as a reverse biased Schottky junction. By including this junction, modeled as a reverse biased gated diode at source, the DC model is able to reproduce the scaling of the electrical characteristics even for short channel devices. The small signal AC part of the model uses a transmission line approach in order to compute the impedances of the channel and parasitic regions of the device. The overlap capacit…

DC modelMaterials scienceContact effectsparasitic capacitanceSchottky barrierOrganic thin film transistors02 engineering and technologyHybrid-pi model01 natural sciencesSignalNon-quasi static small signal modelBiomaterialsOrganic thin film transistors; DC model; AC model; Contact effects; parasitic capacitance; Non-quasi static small signal modelParasitic capacitanceTransmission line0103 physical sciencesHardware_INTEGRATEDCIRCUITSMaterials ChemistryAC modelElectrical and Electronic EngineeringElectrical impedance010302 applied physicsbusiness.industryGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsOrganic semiconductorThin-film transistorOptoelectronics0210 nano-technologybusinessOrganic Electronics
researchProduct

Role of photoactive layer morphology in high fill factor all-polymer bulk heterojunction solar cells

2011

We report on the realization of all-polymer solar cells based on blends of poly(3-hexylthiophene-2,5-diyl) (P3HT) as a donor and poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)) as an acceptor. High fill factors are demonstrated for the first time in this class of devices suggesting high dissociation efficiency for the bounded electron-hole pairs and balanced electron and hole mobility along the thin films. The use of the high-mobility n-type P(NDI2OD-T2) polymer enables us to overcome one of the problems limiting the efficiency of all-polymer solar cells, resulting in fill factors comparable with those reported for …

DYNAMICSElectron mobilityMaterials scienceFullerenePHOTOVOLTAIC DEVICESLIGHT-INTENSITY DEPENDENCEBLENDSPolymer solar cellPhotoactive layerMaterials ChemistryThin filmSettore CHIM/02 - Chimica FisicaOpen-circuit voltagebusiness.industryORIGINPOLY(3-HEXYLTHIOPHENE)General ChemistryHybrid solar cellAcceptorTRANSPORTOPEN-CIRCUIT VOLTAGEsolar cells bulk heterojunctions devices organic electronicsTRANSISTORSOptoelectronicsbusinessCONJUGATED POLYMERS
researchProduct

ELECTROCHEMICAL FABRICATION OF METAL/OXIDE/CONDUCTING POLYMER JUNCTIONS FOR ELECTRONIC DEVICES

2014

Electrochemical fabrication metal/oxide/conducting polymer junctions electronic devicesSettore ING-IND/23 - Chimica Fisica ApplicataSOLID STATE ELECTROLYTIC CAPACITORS FIELD EFFECT TRANSISTORS ANODIC OXIDES CONDUCTING POLYMERS PHOTOELECTROCHEMISTRY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY PEDOT NIOBIUM OXIDE TITANIUM OXIDE TANTALUM OXIDE
researchProduct

Increased conductivity of a hole transport layer due to oxidation by a molecular nanomagnet

2008

Thin film transistors based on polyarylamine poly?N,N?-diphenyl-N,N ?bis?4-hexylphenyl?- ?1,1?biphenyl?-4,4?-diamine ?pTPD? were fabricated using spin coating in order to measure the mobility of pTPD upon oxidation. Partially oxidized pTPD with a molecular magnetic cluster showed an increase in mobility of over two orders of magnitude. A transition in the mobility of pTPD upon doping could also be observed by the presence of a maximum obtained for a given oxidant ratio and subsequent decrease for a higher ratio. Such result agrees well with a previously reported model based on the combined effect of dipolar broadening of the density of states and transport manifold filling. Peer Reviewed

Electron mobilityMaterials scienceOrganic compounds.Analytical chemistryDipolar broadeningGeneral Physics and AstronomySpin coatingHole mobilityElectronic density of statesConductivityOxidacióCompostos orgànicsElectrical resistivity and conductivity:FÍSICA [UNESCO]Molecular clustersOrganic compoundsOxidationDopingElectrical conductivityOxidation.Molecular nanomagnetMolecular magnetic clusterMolecular magnetism Nanostructured materialsSpin coatingDopingUNESCO::FÍSICAElectric conductivity.Thin film transistorsNanostructured materialsConductivitat elèctricaNanomagnet:Enginyeria electrònica::Microelectrònica [Àrees temàtiques de la UPC]Doping ; Electrical conductivity ; Electronic density of states ; Hole mobility ; Molecular clusters ; Molecular magnetism Nanostructured materials ; Organic compounds ; Oxidation ; Spin coating ; Thin film transistorsDensity of statesNanostructured materials.Hole transport layerMaterials nanoestructuratsOrder of magnitude
researchProduct

From monolayer to multilayer N-channel polymeric field-effect transistors with precise conformational order

2012

Monolayer field-effect transistors based on a high-mobility n-type polymer are demonstrated. The accurate control of the long-range order by Langmuir-Schafer (LS) deposition yields dense polymer packing exhibiting good injection properties, relevant current on/off ratio and carrier mobility in a staggered configuration. Layer-by-layer LS film transistors of increasing thickness are fabricated and their performance compared to those of spin-coated films.

Electron mobilityMaterials scienceTransistors ElectronicPolymersNanotechnologyThiophenesNaphthalenesTransistorslaw.inventionlawMonolayerElectronicDeposition (phase transition)General Materials Sciencemonolayer field-effect transistorchemistry.chemical_classificationbusiness.industrysemiconducting polymersMechanical EngineeringTransistorTransistor monolayer polymers orderPolymercharge transportchemistrylayered materialsMechanics of MaterialsN channelOptoelectronicsField-effect transistorbusiness
researchProduct

Two-Step Solution-Processed Two-Component Bilayer Phthalocyaninato Copper-Based Heterojunctions with Interesting Ambipolar Organic Transiting and Eth…

2016

International audience; The two-component phthalocyaninato copper-based heterojunctions fabricated from n-type CuPc(COOC8H17)(8) and p-type CuPc(OC8H17)(8) by a facile two-step solution-processing quasi-Langmuir-Shafer method with both n/p- and p/n-bilayer structures are revealed to exhibit typical ambipolar air-stable organic thin-film transistor (OTFT) performance. The p/n-bilayer devices constructed by depositing CuPc(COOC8H17)(8) film on CuPc(OC8H17)(8) sub-layer show superior OTFT performance with hole and electron mobility of 0.11 and 0.02 cm(2) V-1 s(-1), respectively, over the ones with n/p-bilayer heterojunction structure with the hole and electron mobility of 0.03 and 0.016 cm(2) …

Electron mobilityMaterials scienceroom-temperaturematerials designsemiconducting natureairsolution-processability02 engineering and technologythin-film transistorsphthalocyanines010402 general chemistry01 natural sciences[ CHIM ] Chemical Sciencesgas sensorchemistry.chemical_compound[CHIM]Chemical Sciencesorganic heterojunctioncomparative performancesbusiness.industryAmbipolar diffusionMechanical EngineeringBilayerethanol sensorsfield-effect transistorsHeterojunction[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesIndium tin oxidechemistryMechanics of MaterialsThin-film transistor[ CHIM.MATE ] Chemical Sciences/Material chemistryPhthalocyanineOptoelectronicsfunctional theory calculationsField-effect transistor0210 nano-technologybusinessambipolar OTFTn-type
researchProduct