6533b856fe1ef96bd12b1c8a
RESEARCH PRODUCT
mplicit Identification of Contact Parameters in a Continuous Chain Model
Ole Ø. MouritsenMichael Rygaard HansenMorten Kjeld EbbesenSøren Emil Sørensensubject
Contact modelMathematical optimizationEngineeringbusiness.industryExperimental measurementsMultibody systemResiduallcsh:QA75.5-76.95Computer Science ApplicationsHysteresisChain (algebraic topology)Control and Systems EngineeringControl theoryModeling and SimulationIndentationDamping factorPoint (geometry)Contact dynamicslcsh:Electronic computers. Computer sciencebusinessOptimization methodsSoftwaredescription
Accurate contact modeling is of great importance in the field of dynamic chain simulations. In this paper emphasis is on contact dynamics for a time-domain simulation model of large chains guided in a closed loop track. The chain model is based on theory for unconstrained rigid multibody dynamics where contact within the chain and with the track is defined through continuous point contacts using the contact indentation and rate as means. This paper presents an implicit method to determine contact parameters of the chain model through the use of none gradient optimization methods. The set of model parameters are estimated by minimizing the residual between simulated and measured results. The parameter identification is tested on four different formulations of the Hunt-Crossly hysteresis damping factor with the aim of recognizing a superior model.
year | journal | country | edition | language |
---|---|---|---|---|
2011-01-01 | Modeling, Identification and Control: A Norwegian Research Bulletin |