6533b856fe1ef96bd12b2726
RESEARCH PRODUCT
Shell-model calculation of isospin-symmetry breaking correction to superallowed Fermi beta-decay
N. A. SmirnovaKarim BennaceurM. BenderL. Xayavongsubject
Nuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]SHELL modelNuclear TheoryGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences23.40.-sNuclear physicsNuclear Theory (nucl-th)21.60.Cs0103 physical sciences21.10.PcSensitivity (control systems)Symmetry breakingWave function010303 astronomy & astrophysics[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th]Physicsta114010308 nuclear & particles physicsCharge (physics)Beta decay21.10.JxIsospinQuantum electrodynamics23.40.Bwbeta decayisospin-symmetry breakingFermi Gamma-ray Space Telescopedescription
We investigate the radial-overlap part of the isospin-symmetry breaking correction to superallowed $0^+\to 0^+$-decay using the shell-model approach similar to that of Refs. [1, 2]. The 8 sd-shell emitters with masses between $A=22$ and $A=38$ have been re-examined. The Fermi matrix element is evaluated with realistic spherical single-particle wave functions, obtained from spherical Woods-Saxon (WS) or Hartree-Fock (HF) potentials, fine-tuned to reproduce the experimental data on charge radii and separation energies for nuclei of interest. The elaborated adjustment procedure removes any sensitivity of the correction to a specific parametrisation of the WS potential or to various versions of the Skyrme interaction. The present results are generally in good agreement with those reported in Refs. [3, 4]. At the same time, we find that the calculations with HF wave functions result in systematically lower values of the correction.
year | journal | country | edition | language |
---|---|---|---|---|
2016-09-27 |