6533b856fe1ef96bd12b307f
RESEARCH PRODUCT
Finite-size scaling analysis of the anisotropic critical behavior of the two-dimensional Ising model under shear
Peter VirnauKurt BinderJürgen HorbachDavid Wintersubject
PhysicsCondensed matter physicsCritical phenomenaMonte Carlo methodGeneral Physics and AstronomyISING MODELShear rateMONTE CARLO SIMULATIONSHEARHigh Energy Physics::ExperimentIsing modelStatistical physicsCRITICAL PHENOMENAAnisotropyStructure factorScalingCritical exponentdescription
The critical behavior of the two-dimensional Ising Model with non-conserved order parameter in steady-state shear is studied by large-scale Monte Carlo simulations. Studying the structure factor S(qx,qy) in the disordered phase, the ratio of correlation length exponents νx/νy in the two lattice directions (x,y) is estimated, and the critical temperature is determined as a function of the shear rate as Tc() − Tc(0) ∝ with ≈0.45. Critical exponents β≈0.37, γ≈1.1, ; ν⊥≈0.46, ν∥≈1.38 are roughly compatible with anisotropic hyperscaling.
year | journal | country | edition | language |
---|---|---|---|---|
2010-10-12 | EPL (Europhysics Letters) |