6533b856fe1ef96bd12b3224
RESEARCH PRODUCT
The Monte Carlo simulation of the Borexino detector
G. ManuzioMaurizio CanepaM. Goeger-neffI. S. DrachnevY. SuvorovY. SuvorovJ. ThurnD. FrancoA. PocarMatthias LaubensteinManuel MeyerR. RoncinLivia LudhovaPaolo LombardiJay Burton BenzigerA. JanyD. BasilicoA. M. GorettiA. S. ChepurnovJ. MartynE. LitvinovichE. LitvinovichMarcin WójcikO. ZaimidorogaM. D. SkorokhvatovM. D. SkorokhvatovN. RossiH. WangKai ZuberE. MeroniA. VishnevaB. OpitzD. JeschkeL.f.f. StokesV. V. KobychevMichael WurmE. V. HungerfordO. SmirnovXuefeng DingZ. YokleyLino MiramontiS. SchönertD. BravoV. AtroshchenkoE. V. UnzhakovA. V. DerbinC. GhianoA. SotnikovAldo IanniP. ShakinaCaren HagnerG. TesteraG. LukyanchenkoCristiano GalbiatiK. ChoiLothar OberauerZ. BagdasarianK. FomenkoD. KrynGioacchino RanucciMatteo AgostiniM. GromovR. TartagliaAldo RomaniV. N. MuratovaT. HoudyL. Di NotoF. LombardiD. BickD. BickAndrea IanniSandra ZavatarelliP. CavalcanteMichele MagnozziM. MisiaszekD. A. SemenovG. ZuzelG. BelliniS. CaprioliMarco GiammarchiD. KorablevG. BonfiniFrank CalapriceAlessandra ReS. DaviniF. FroborgR. B. VogelaarI. N. MachulinI. N. MachulinL. PappFausto OrticaMarco PallaviciniD. D'angeloM. CarliniB. NeumairAndrey FormozovF. Von FeilitzschS. AppelG. KorgaB. CaccianigaA. CaminataF. GabrieleA. RazetoS. WeinzS. MarcocciL. BorodikhinaM. ToropovaK. Altenmüllersubject
Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsSolar neutrinoMonte Carlo methodscintillation counter: liquidSolar neutrinosenergy resolution01 natural sciences7. Clean energyLarge volume liquid scintillator detectorHigh Energy Physics - Experiment[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Large volume liquid scintillator detectorsBorexinoPhysicsphotomultipliertrack data analysisDetectorefficiency: quantumddc:540GEANTBorexinoNeutrinophoton: yieldnumerical calculations: Monte CarloPhotomultiplierdata analysis methodenergy lossScintillatorSolar neutrinoprogrammingphoton: reflectionMonte Carlo simulationsNuclear physics0103 physical sciencesphoton: scattering[INFO]Computer Science [cs][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsbackground: radioactivityMonte Carlo simulationdetector: designScintillation010308 nuclear & particles physicsbibliographyAstronomy and AstrophysicscalibrationLarge volume liquid scintillator detectors; Monte Carlo simulations; Solar neutrinos; Astronomy and Astrophysicsattenuation: lengthpile-upelectronics: readoutdescription
We describe the Monte Carlo (MC) simulation package of the Borexino detector and discuss the agreement of its output with data. The Borexino MC 'ab initio' simulates the energy loss of particles in all detector components and generates the resulting scintillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The algorithm proceeds with a detailed simulation of the electronics chain. The MC is tuned using data collected with radioactive calibration sources deployed inside and around the scintillator volume. The simulation reproduces the energy response of the detector, its uniformity within the fiducial scintillator volume relevant to neutrino physics, and the time distribution of detected photons to better than 1% between 100 keV and several MeV. The techniques developed to simulate the Borexino detector and their level of refinement are of possible interest to the neutrino community, especially for current and future large-volume liquid scintillator experiments such as Kamland-Zen, SNO+, and Juno.
year | journal | country | edition | language |
---|---|---|---|---|
2017-04-07 |