0000000000074079
AUTHOR
T. Houdy
Solar neutrino physics with Borexino
We present the most recent solar neutrino results from the Borexino experiment at the Gran Sasso underground laboratory. In particular, refined measurements of all neutrinos produced in the {\it pp} fusion chain have been made. It is the first time that the same detector measures the entire range of solar neutrinos at once. These new data weakly favor a high-metallicity Sun. Prospects for measuring CNO solar neutrinos are also discussed.
Digital pulse-shape analysis with a TRACE early silicon prototype
[EN] A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 tun thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination. K.; 2014 Elsevier B.V. All rights reserved
Recent Borexino results and perspectives of the SOX measurement
International audience; Borexino is a liquid scintillator detector sited underground in the Laboratori Nazionali del Gran Sasso (Italy). Its physics program, until the end of this year, is focussed on the study of solar neutrinos, in particular from the Beryllium, pp, pep and CNO fusion reactions. Knowing the reaction chains in the sun provides insights towards physics disciplines such as astrophysics (star physics, star formation, etc.), astroparticle and particle physics. Phase II started in 2011 and its aim is to improve the phase I results, in particular the measurements of the neutrino fluxes from the pep and CNO processes. By the end of this year, data taking from the sun will be over…
The measurement of the pp chain solar neutrinos in Borexino
SOX: search for short baseline neutrino oscillations with Borexino
International audience; The Borexino detector has convincingly shown its outstanding performances in the low energy regime through its accomplishments in the observation and study of the solar and geo neutrinos. It is then an ideal tool to perform a state of the art source-based experiment for testing the longstanding hypothesis of a fourth sterile neutrino with ~ eV(2) mass, as suggested by several anomalies accumulated over the past three decades in source, reactor, and accelerator-based experiments. The SOX project aims at successively deploying two intense radioactive sources, made of Cerium (antineutrino) and Chromium (neutrino), respectively, in a dedicated pit located beneath the det…
Short distance neutrino oscillations with Borexino
International audience; The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two source…
The $^{144}$Ce source for SOX
International audience; The SOX (Short distance neutrino Oscillations with BoreXino) project aims at testing the light sterile neutrino hypothesis. To do so, two artificials sources of antineutrinos and neutrinos respectively will be consecutively deployed at the Laboratori Nazionali del Gran Sasso (LNGS) in close vicinity to Borexino, a large liquid scintillator detector. This document reports on the source production and transportation. The source should exhibit a long lifetime and a high decay energy, a requirement fullfilled by the (144)Ce-(144)Pr pair at secular equilibrium. It will be produced at FSUE “Mayak” PA using spent nuclear fuel. It will then be shielded and packed according t…
Seasonal Modulation of the $^7$Be Solar Neutrino Rate in Borexino
We detected the seasonal modulation of the $^7$Be neutrino interaction rate with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. The period, amplitude, and phase of the observed time evolution of the signal are consistent with its solar origin, and the absence of an annual modulation is rejected at 99.99\% C.L. The data are analyzed using three methods: the sinusoidal fit, the Lomb-Scargle and the Empirical Mode Decomposition techniques, which all yield results in excellent agreement.
First operation of the KATRIN experiment with tritium
AbstractThe determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of $$\upbeta $$β-decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of $$0.2\hbox { eV}$$0.2eV ($$90\%$$90% CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was …
Perspectives for CNO neutrino detection in Borexino
International audience; Borexino measured with unprecedented accuracy the fluxes of solar neutrinos emitted at all the steps of the pp fusion chain. Still missing is the measurement of the flux of neutrinos produced in the CNO cycle. A positive measurement of the CNO neutrino flux is of fundamental importance for understanding the evolution of stars and addressing the unresolved controversy on the solar abundances. The measurement of the CNO neutrino flux in Borexino is challenging because of the low intensity of this component (CNO cycle accounts for about 1% of the energy emitted by Sun), the lack of prominent spectral features and the presence of background sources. The main background c…
CeSOX: An experimental test of the sterile neutrino hypothesis with Borexino
International audience; The third phase of the Borexino experiment that’s referred to as SOX is devoted to test the hypothesis of the existence of one (or more) sterile neutrinos at a short baseline (~5–10m). The experimental measurement will be made with artificial sources namely with a 144Ce–144Pr antineutrino source at the first stage (CeSOX) and possibly with a 51Cr neutrino source at the second one. The fixed 144Ce–144Pr sample will be placed beneath the detector in a special pit and the initial activity will be about 100 – 150 kCi. The start of data taking is scheduled for April 2018. The article gives a short description of the preparation for the first stage and shows the expected s…
Suppression of Penning discharges between the KATRIN spectrometers
The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)neutrino mass with a sensitivity of $0.2\textrm{ eV/c}^2$ (90$\%$ C.L.) by precisely measuring the endpoint region of the tritium $\beta$-decay spectrum. It uses a tandem of electrostatic spectrometers working as MAC-E (magnetic adiabatic collimation combined with an electrostatic) filters. In the space between the pre-spectrometer and the main spectrometer, an unavoidable Penning trap is created when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create a…
Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (−1.0−1.1+0.9) eV2. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a …
Improved measurement of $^8$B solar neutrinos with $1.5 kt·y$ of Borexino exposure
We report on an improved measurement of the $^8$B solar neutrino interaction rate with the Borexino experiment at the Laboratori Nazionali del Gran Sasso. Neutrinos are detected via their elastic scattering on electrons in a large volume of liquid scintillator. The measured rate of scattered electrons above 3 MeV of energy is $0.223\substack{+0.015 \\ -0.016}\,(stat)\,\substack{+0.006 \\ -0.006}\,(syst)$ cpd/100 t, which corresponds to an observed solar neutrino flux assuming no neutrino flavor conversion of $\Phi\substack{\rm ES \\ ^8\rm B}=2.57\substack{+0.17 \\ -0.18}(stat)\substack{+0.07\\ -0.07}(syst)\times$10$^6$ cm$^{-2}\,$s$^{-1}$. This measurement exploits the active volume of the …
Understanding the detector behavior through Montecarlo and calibration studies in view of the SOX measurement
International audience; Borexino is an unsegmented neutrino detector operating at LNGS in central Italy. The experiment has shown its performances through its unprecedented accomplishments in the solar and geoneutrino detection. These performances make it an ideal tool to accomplish a state- of-the-art experiment able to test the existence of sterile neutrinos (SOX experiment). For both the solar and the SOX analysis, a good understanding of the detector response is fundamental. Consequently, calibration campaigns with radioactive sources have been performed over the years. The calibration data are of extreme importance to develop an accurate Monte Carlo code. This code is used in all the n…
Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data
A search for the solar neutrino effective magnetic moment has been performed using data from 1291.5 days exposure during the second phase of the Borexino experiment. No significant deviations from the expected shape of the electron recoil spectrum from solar neutrinos have been found, and a new upper limit on the effective neutrino magnetic moment of $\mu_{\nu}^{eff}$ $<$ 2.8$\cdot$10$^{-11}$ $\mu_{B}$ at 90\% c.l. has been set using constraints on the sum of the solar neutrino fluxes implied by the radiochemical gallium experiments.Using the limit for the effective neutrino moment, new limits for the magnetic moments of the neutrino flavor states, and for the elements of the neutrino magne…
Solar neutrino spectroscopy in Borexino
International audience; In more than ten years of operation, Borexino has performed a precision measurement of the solar neutrino spectrum, resolving almost all spectral components originating from the proton-proton fusion chain. The presentation will review the results recently released for the second data taking phase 2012–2016 during which the detector excelled by its unprecedentedly low background levels. New results on the rate of pp, 7Be, pep and 8B neutrinos as well as their implications for solar neutrino oscillations and metallicity are discussed.
Simultaneous precision spectroscopy of pp, Be7, and pep solar neutrinos with Borexino Phase-II
We present the simultaneous measurement of the interaction rates Rpp, RBe, Rpep of pp, Be7, and pep solar neutrinos performed with a global fit to the Borexino data in an extended energy range (0.19–2.93) MeV with particular attention to details of the analysis methods. This result was obtained by analyzing 1291.51 days of Borexino Phase-II data, collected after an extensive scintillator purification campaign. Using counts per day (cpd)/100 ton as unit, we find Rpp=134±10(stat)−10+6(sys), RBe=48.3±1.1(stat)−0.7+0.4(sys); and RpepHZ=2.43±0.36(stat)−0.22+0.15(sys) assuming the interaction rate RCNO of CNO-cycle (Carbon, Nitrogen, Oxigen) solar neutrinos according to the prediction of the high…
The Monte Carlo simulation of the Borexino detector
We describe the Monte Carlo (MC) simulation package of the Borexino detector and discuss the agreement of its output with data. The Borexino MC 'ab initio' simulates the energy loss of particles in all detector components and generates the resulting scintillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The algorithm proceeds with a detailed simulation of the electronics c…
SOX : short distance neutrino oscillations with Borexino
Abstract The Borexino detector has convincingly shown its outstanding performance in the in the sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection, which make it the ideal tool to unambiguously test the long-standing issue of the existence of a sterile neutrino, as suggested by several anomalies: the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar ν experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on chromium and cerium, which deployed under the experiment will emit two intense beams of ν e (Cr) and ν e ‾ (Ce). Interacting in the a…
Solar neutrino detectors as sterile neutrino hunters
International audience; The large size and the very low radioactive background of solar neutrino detectors such as Borexino at the Gran Sasso Laboratory in Italy offer a unique opportunity to probe the existence of neutrino oscillations into new sterile components by means of carefully designed and well calibrated anti-neutrino and neutrino artificial sources. In this paper we briefly summarise the key elements of the SOX experiment, a program for the search of sterile neutrinos (and other short distance effects) by means of a (144)Ce-(144)Pr anti-neutrino source and, possibly in the medium term future, with a (51)Cr neutrino source.
A White Paper on keV sterile neutrino Dark Matter
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrin…
The high precision measurement of the 144Ce activity in the SOX experiment
International audience; In order to perform a resolutive measurement to clarify the neutrino anomalies and to observe possible short distance neutrino oscillations, the SOX (Short distance neutrino Oscillations with BoreXino) experiment is under construction. In the first phase, a 100 kCi (144)Ce-(144)Pr antineutrino source will be placed under the Borexino detector at the Laboratori Nazionali del Gran Sasso (LNGS), in center of Italy, and the rate measurement of the antineutrino events, observed by the very low radioactive background Borexino detector, will be compared with the high precision (< 1%) activity measurement performed by two calorimeters. The source will be embedded in a 19 mm …