6533b857fe1ef96bd12b4485

RESEARCH PRODUCT

Incorporating Biotic Information in Species Distribution Models: A Coregionalized Approach

Joaquín Martínez-minayaAntonio López-quílezXavier BarberDavid ConesaMaria Grazia PeninnoIosu Paradinas

subject

0106 biological sciencesGeneral MathematicsSpecies distributionBayesian probabilityspeciescoregionalized modelsBayesian hierarchical models010603 evolutionary biology01 natural sciences010104 statistics & probabilitymodelsEngraulisHakeAnchovyStatisticsComputer Science (miscellaneous)INLAdistributionEuropean anchovyPesqueríasCentro Oceanográfico de Murcia0101 mathematicsEngineering (miscellaneous)SPDEfishspecies interactionbiologymathematicslcsh:MathematicsUnivariateMerluccius merlucciusbiology.organism_classificationlcsh:QA1-939fisheriesEnvironmental sciencepredation

description

In this work, we discuss the use of a methodological approach for modelling spatial relationships among species by means of a Bayesian spatial coregionalized model. Inference and prediction is performed using the integrated nested Laplace approximation methodology to reduce the computational burden. We illustrate the performance of the coregionalized model in species interaction scenarios using both simulated and real data. The simulation demonstrates the better predictive performance of the coregionalized model with respect to the univariate models. The case study focus on the spatial distribution of a prey species, the European anchovy (Engraulis encrasicolus), and one of its predator species, the European hake (Merluccius merluccius), in the Mediterranean sea. The results indicate that European hake and anchovy are positively associated, resulting in improved model predictions using the coregionalized model.

10.3390/math9040417http://hdl.handle.net/10261/326441