6533b857fe1ef96bd12b4516

RESEARCH PRODUCT

Integrands of loop amplitudes within loop-tree duality

Stefan WeinzierlJuan Pablo VesgaRobert RunkelZoltán Szőr

subject

High Energy Physics - TheoryPhysicsRecurrence relationField (physics)010308 nuclear & particles physicsDuality (optimization)FOS: Physical sciencesComputer Science::Digital Libraries01 natural sciencesRenormalizationLoop (topology)High Energy Physics - PhenomenologyAmplitudeHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)0103 physical sciencesLimit (mathematics)Quantum field theory010306 general physicsMathematical physics

description

Using loop-tree duality, we relate a renormalised $n$-point $l$-loop amplitude in a quantum field theory to a phase-space integral of a regularised $l$-fold forward limit of a UV-subtracted $(n+2l)$-point tree-amplitude-like object. We show that up to three loops the latter object is easily computable from recurrence relations. This defines an integrand of the loop amplitude with a global definition of the loop momenta. Field and mass renormalisation are performed in the on-shell scheme.

https://dx.doi.org/10.48550/arxiv.1906.02218