6533b858fe1ef96bd12b6c68

RESEARCH PRODUCT

Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador

Carlos ValarezoRütger RollenbeckWolfgang WilckeJens Boy

subject

CanopyAtmospheric ScienceGlobal and Planetary ChangeBiomass (ecology)EcologyAmazon rainforestAmazonianVegetationNutrientDeposition (aerosol physics)AgronomyEnvironmental ChemistryEnvironmental scienceEcosystemGeneral Environmental Science

description

[1] We explored the influence of biomass burning in Amazonia and northeastern Latin America on N, C, P, S, K, Ca, Mg, Al, Mn, and Zn cycles of an Andean montane forest in south Ecuador exposed to the Amazon basin between May 1998 and April 2003. We assessed the response of the element budget of three microcatchments (8–13 ha) to the variations in atmospheric deposition between the intensive burning season and outside the burning season in Amazonia. There were significantly elevated H, N, and Mn depositions during biomass burning. Elevated H deposition during biomass burning caused elevated base metal loss from the canopy and the organic horizon and deteriorated already low base metal supply of the vegetation. N was only retained during biomass burning but not during nonfire conditions when deposition was much smaller. We conclude that biomass burning-related aerosol emissions in Amazonia are large enough to substantially increase element deposition at the western rim of Amazonia. Particularly the related increase of acid deposition impoverishes already base metal scarce ecosystems. As biomass burning is most intense during El Nino situations, a shortened El Nino–Southern Oscillation cycle because of global warming likely enhances the acid deposition at our study forest.

https://doi.org/10.1029/2007gb003158