6533b859fe1ef96bd12b79d0

RESEARCH PRODUCT

Surface plasmon routing along right angle bent metal strips

Alain DereuxAnne-laure BaudrionMaría Ujué GonzálezJ.-c. Weeber

subject

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]POLARITONSMaterials sciencePhotonPhysics and Astronomy (miscellaneous)[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsBent molecular geometryRight anglePhysics::Optics02 engineering and technologyPROPAGATION01 natural scienceslaw.invention010309 opticsOpticslaw0103 physical sciencesPolariton[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industrySurface plasmon021001 nanoscience & nanotechnologySurface plasmon polariton[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicPhotonicsScanning tunneling microscope0210 nano-technologybusiness

description

International audience; An efficient routing of surface plasmon polaritons (SPP) is of fundamental importance in the development of SPP-based photonics. This paper reports that microgratings acting as Bragg mirrors can guide SPP along metal stripes waveguides featuring 90 degrees bents. The measurement of the mirrors efficiency, performed by means of photon scanning tunneling microscopy, shows that bent losses as low as 1.9 dB can be achieved. Finally, we demonstrate operating SPP beamsplitters obtained by an appropriate design of the Bragg mirrors constituting elements. (c) 2005 American Institute of Physics.

https://hal.archives-ouvertes.fr/hal-00472596/document