0000000000059854
AUTHOR
María Ujué González
DEVELOPMENT AND NEAR-FIELD CHARACTERIZATION OF SURFACE PLASMON WAVEGUIDES
Surface plasmon interference fringes in back-reflection
We report the experimental observation of surface plasmon polariton (SPP) interference fringes with near-unity visibility and half-wavelength periodicity obtained in back reflection on a Bragg mirror. The presented method based on leakage radiation microscopy (LRM) represents an alternative solution to optical near-field analysis and opens new ways for the quantitative analysis of SPP fringes. With LRM we investigate various SPP interference patterns and analyze the high reflectivity of Bragg mirror in comparison with theoretical models.
Analysis of the angular acceptance of surface plasmon Bragg mirrors
International audience; We analyze an important aspect of the behavior of surface plasmon polariton (SPP) Bragg mirrors: the dependence of the angular acceptance for reflection on the incidence angle. By means of leakage radiation microscopy, both in direct and Fourier space, we observe that the angular acceptance diminishes for increasing incidence angles. This effect, which can considerably affect the design of devices based on these elements, is shown to be the consequence of the decrease of the bandgap width with increasing incidence angle. (c) 2007 Optical Society of America.
Design, near-field characterization, and modeling of 45 circle surface-plasmon Bragg mirrors
The development of surface plasmon polariton (SPP) optical elements is mandatory in order to achieve surface plasmon based photonics. A current approach to reach this goal is to take advantage of the interaction of SPP with defects and design elements obtained by the micro- or nano-structuration of the metal film. In this work, we have performed a detailed study of the performance and behavior of SPP-Bragg mirrors, designed for 45\ifmmode^\circ\else\textdegree\fi{} incidence, based on this approach. Mirrors consisting of gratings of both metal ridges on the metal surface and grooves engraved in the metal, fabricated by means of electron beam lithography and focused ion beam, have been consi…
Efficient unidirectional nanoslit couplers for surface plasmons
5 pages, 4 figures.
Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy
International audience; Waveguiding of surface plasmon polaritons by dielectric-loaded metal structures is studied in detail by combining numerical simulations and leakage radiation microscopy. These types of waveguides are first numerically investigated using the effective index model and the differential method. We analyzed systematically the influence of the ridge width and thickness of the waveguide on the properties of the surface plasmon guided modes. In particular we investigated the confinement factor of the modes and their associated propagation lengths. These two parameters can be optimized by adjusting the thickness of the dielectric layer. Waveguides loaded with thick and thin d…
Isolated self-assembled InAs/InP(001) quantum wires obtained by controlling the growth front evolution
6 páginas, 5 figuras. In this work we explore the first stages of quantum wire (QWR) formation studying the evolution of the growth front for InAs coverages below the critical thickness, θc, determined by reflection high energy electron diffraction (RHEED). Our results obtained by in situ measurement of the accumulated stress evolution during InAs growth on InP(001) show that the relaxation process starts at a certain InAs coverage θRθR this ensemble of isolated nanostructures progressively evolves towards QWRs that cover the whole surface for θ = θc. These results allow for a better understanding of the self-assembling process of QWRs and enable the study of the individual properties of In…
Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides
International audience; Surface plasmon waveguides (SPW's) are metal ridges featuring widths in the micrometer range and thicknesses of a few tens of nanometers. A focused ion beam has been used to carve microscatterers into gold SPW's and the near-field distributions around these microstructures are observed by means of photon scanning tunneling microscopy (PSTM). On the basis of near-field images, we show that a finite length periodic arrangement of narrow slits can reflect a surface plasmon mode propagating along a SPW. The reflection efficiency of the micrograting is found to depend upon the number of slits, the period of the grating, and the incident wavelength. The optimum reflection …
Study of the angular acceptance of surface plasmon Bragg mirrors
Surface plasmon based photonic devices are promising candidates for highly integrated optics. A surface plasmon (SP) is basically an electromagnetic wave confined in the interface between a metal and a dielectric, and is due to the interaction of the electromagnetic field with the surface bounded electron charges in the metal. A SP can propagate along the interface where it is confined (the propagation length being tens of micrometers in the visible range), but its associated electromagnetic field decreases exponentially in the perpendicular direction, in such a way that this vertical confinement makes SP very attractive for the design of optical devices in coplanar geometry. An important e…
Surface plasmon routing along right angle bent metal strips
International audience; An efficient routing of surface plasmon polaritons (SPP) is of fundamental importance in the development of SPP-based photonics. This paper reports that microgratings acting as Bragg mirrors can guide SPP along metal stripes waveguides featuring 90 degrees bents. The measurement of the mirrors efficiency, performed by means of photon scanning tunneling microscopy, shows that bent losses as low as 1.9 dB can be achieved. Finally, we demonstrate operating SPP beamsplitters obtained by an appropriate design of the Bragg mirrors constituting elements. (c) 2005 American Institute of Physics.
Modulation of surface plasmon coupling-in by one-dimensional surface corrugation
Surface plasmon-polaritons have recently attracted renewed interest in the scientific community for their potential in sub-wavelength optics, light generation and non-destructive sensing. Given that they cannot be directly excited by freely propagating light due to their intrinsical binding to the metal surface, the light-plasmon coupling efficiency becomes of crucial importance for the success of any plasmonic device. Here we present a comprehensive study on the modulation (enhancement or suppression) of such coupling efficiency by means of one-dimensional surface corrugation. Our approach is based on simple wave interference and enables us to make quantitative predictions which have been …
Size and emission wavelength control of InAs/InP quantum wires
5 páginas, 5 figuras, 1 tabla.-- Comunicación presentada al E-MRS 2004 Spring Meeting celebrado en Estrasburgo (Francia) Mayo del 2004.
Size control of InAs∕InP(001) quantum wires by tailoring P∕As exchange
The size and emission wavelength of self-assembled InAs∕InP(001) quantum wires (QWrs) is affected by the P∕As exchange process. In this work, we demonstrate by in situ stress measurements that P∕As exchange at the InAs∕InP interface depends on the surface reconstruction of the InAs starting surface and its immediate evolution when the arsenic cell is closed. Accordingly, the amount of InP grown on InAs by P∕As exchange increases with substrate temperature in a steplike way. These results allow us to engineer the size of the QWr for emission at 1.3 and 1.55 μm at room temperature by selecting the range of substrate temperatures in which the InP cap layer is grown.
Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy
International audience; The guiding properties of polymer waveguides on a thin gold film are investigated in the optical regime. The details of propagation in the waveguides are studied simultaneously in the object and Fourier planes, providing direct measurement of both the real and imaginary parts of the effective index of the guided mode. A fair agreement between theoretical analysis provided by the differential method and experimental leakage radiation microscopy data is shown. All these tools bring valuable information for designing and understanding such devices. (C) 2007 American Institute of Physics.