6533b859fe1ef96bd12b803c
RESEARCH PRODUCT
Relationship between soil microarthropod species diversity and plant growth does not change when the system is disturbed
Mira LiiriTaina PennanenHeikki SetäläHannu FritzeJari Haimisubject
BetulaceaeNutrientEcologySoil biologyCommunity structurefood and beveragesSpecies diversityEcosystemSpecies richnessBiologyMicrocosmbiology.organism_classificationEcology Evolution Behavior and Systematicsdescription
Soil microarthropods influence vital ecosystem processes, such as decomposition and nutrient mineralisation. There is evidence, however, that proper functioning of ecosystems does not require the presence of all its constituent species, and therefore some species can be regarded as functionally redundant. It has been proposed that species redundancy can act as an insurance against unfavourable conditions, and that functionally redundant species may become important when a system has faced a disturbance (the “insurance hypothesis”). We conducted a laboratory microcosm experiment with coniferous forest soil and a seedling of silver birch (Betula pendula). A gradient of microarthropod diversity (from one to tens of species of soil mites and Collembola) was created to the systems. We disturbed microcosms with drought to test whether systems with altering microarthropod species richness respond differently to perturbations. Primary production (birch biomass), uptake of nitrogen by the birch seedling, the system's ability to retain nutrients and the structure and biomass of the soil microbial community were analysed. Primary production and nutrient uptake of the birch seedlings increased slightly with increasing microarthropod species richness but only at the species poor end of the diversity gradient. Loss of nutrients and the biomass and community structure of microbes were unaffected by the microarthropods. The effect of drought on the birch biomass production was independent of the species richness of microarthropods. During the disturbance the biomass of microarthropods declined in diverse systems but not in simple ones. These systems were, however, quite resilient; microarthropod communities recovered quickly after the disturbance. Our results suggest that soil microarthropod species are functionally redundant in respect to plant growth, and that the resistance of a system to and its recovery from a disturbance are only weakly related to the species richness of this fauna.
year | journal | country | edition | language |
---|---|---|---|---|
2002-01-01 | Oikos |