6533b859fe1ef96bd12b83fc

RESEARCH PRODUCT

Programmed cell death in the embryonic central nervous system of Drosophila melanogaster.

Karin LüerGerhard M. TechnauJanina SeibertAna Rogulja-ortmannChristof Rickert

subject

Central Nervous SystemProgrammed cell deathanimal structuresEmbryo NonmammalianApoptosisCell CountBiologyNeuroblastInterneuronsmedicineAnimalsCell LineageMolecular BiologyBody PatterningNeuronsGene Expression Regulation DevelopmentalAnatomyNeuromerebiology.organism_classificationEmbryonic stem cellImmunohistochemistryCell biologyClone Cellsmedicine.anatomical_structureDrosophila melanogasternervous systemVentral nerve cordMutationNeuronDrosophila melanogasterGanglion mother cellDevelopmental Biology

description

Although programmed cell death (PCD) plays a crucial role throughout Drosophila CNS development, its pattern and incidence remain largely uninvestigated. We provide here a detailed analysis of the occurrence of PCD in the embryonic ventral nerve cord (VNC). We traced the spatio-temporal pattern of PCD and compared the appearance of, and total cell numbers in,thoracic and abdominal neuromeres of wild-type and PCD-deficient H99mutant embryos. Furthermore, we have examined the clonal origin and fate of superfluous cells in H99 mutants by DiI labeling almost all neuroblasts, with special attention to segment-specific differences within the individually identified neuroblast lineages. Our data reveal that although PCD-deficient mutants appear morphologically well-structured, there is significant hyperplasia in the VNC. The majority of neuroblast lineages comprise superfluous cells, and a specific set of these lineages shows segment-specific characteristics. The superfluous cells can be specified as neurons with extended wild-type-like or abnormal axonal projections, but not as glia. The lineage data also provide indications towards the identities of neuroblasts that normally die in the late embryo and of those that become postembryonic and resume proliferation in the larva. Using cell-specific markers we were able to precisely identify some of the progeny cells,including the GW neuron, the U motoneurons and one of the RP motoneurons, all of which undergo segment-specific cell death. The data obtained in this analysis form the basis for further investigations into the mechanisms involved in the regulation of PCD and its role in segmental patterning in the embryonic CNS.

10.1242/dev.02707https://pubmed.ncbi.nlm.nih.gov/17164416