0000000000135625

AUTHOR

Christof Rickert

The ladybird homeobox genes are essential for the specification of a subpopulation of neural cells

AbstractIn Drosophila, neurons and glial cells are produced by neural precursor cells called neuroblasts (NBs), which can be individually identified. Each NB generates a characteristic cell lineage specified by a precise spatiotemporal control of gene expression within the NB and its progeny. Here we show that the homeobox genes ladybird early and ladybird late are expressed in subsets of cells deriving from neuroblasts NB 5-3 and NB 5-6 and are essential for their correct development. Our analysis revealed that ladybird in Drosophila, like their vertebrate orthologous Lbx1 genes, play an important role in cell fate specification processes. Among those cells that express ladybird are NB 5-6…

research product

Spatio-temporal pattern of cells expressing the clock genes period and timeless and the lineages of period expressing neurons in the embryonic CNS of Drosophila melanogaster.

The initial steps towards the generation of cell diversity in the central nervous system of the fruitfly Drosophila melanogaster take place during early phases of embryonic development when a stereotypic population of neural progenitor cells (neuroblasts and midline precursors) is formed in a precise spatial and temporal pattern, and subsequently expresses a particular sequence of genes. The clarification of the positional, temporal and molecular features of the individual progenitor cells in the nerve cord and brain as well as of their specific types of neuronal and/or glial progeny cells forms an essential basis to understand the mechanisms controlling their development. The present study…

research product

Composition of a Neuromere and Its Segmental Diversification under the Control ofHoxGenes in the Embryonic CNS ofDrosophila

Studies performed at the level of single, identified cells in the fruitfly Drosophila have decisively contributed to our understanding of the mechanisms underlying the development and function of the nervous system. This review highlights some of the work based on single-cell analyses in the embryonic/larval CNS that sheds light on the principles underlying formation and organization of an entire segmental unit and its divergence along the anterior/posterior body axis.

research product

Identity, origin, and migration of peripheral glial cells in the Drosophila embryo.

Glial cells are crucial for the proper development and function of the nervous system. In the Drosophila embryo, the glial cells of the peripheral nervous system are generated both by central neuroblasts and sensory organ precursors. Most peripheral glial cells need to migrate along axonal projections of motor and sensory neurons to reach their final positions in the periphery. Here we studied the spatial and temporal pattern, the identity, the migration, and the origin of all peripheral glial cells in the truncal segments of wildtype embryos. The establishment of individual identities among these cells is reflected by the expression of a combinatorial code of molecular markers. This allows…

research product

In vivo fate mapping with SCL regulatory elements identifies progenitors for primitive and definitive hematopoiesis in mice.

10 páginas, 6 figuras.-- et al.

research product

Progressive derivation of serially homologous neuroblast lineages in the gnathal CNS of Drosophila

Along the anterior-posterior axis the central nervous system is subdivided into segmental units (neuromeres) the composition of which is adapted to their region-specific functional requirements. In Drosophila melanogaster each neuromere is formed by a specific set of identified neural stem cells (neuroblasts, NBs). In the thoracic and anterior abdominal region of the embryonic ventral nerve cord segmental sets of NBs resemble the ground state (2nd thoracic segment, which does not require input of homeotic genes), and serial (segmental) homologs generate similar types of lineages. The three gnathal head segments form a transitional zone between the brain and the ventral nerve cord. It has be…

research product

Labeling of Single Cells in the Central Nervous System of <em>Drosophila melanogaster</em>

In this article we describe how to individually label neurons in the embryonic CNS of Drosophila melanogaster by juxtacellular injection of the lipophilic fluorescent membrane marker DiI. This method allows the visualization of neuronal cell morphology in great detail. It is possible to label any cell in the CNS: cell bodies of target neurons are visualized under DIC optics or by expression of a fluorescent genetic marker such as GFP. After labeling, the DiI can be transformed into a permanent brown stain by photoconversion to allow visualization of cell morphology with transmitted light and DIC optics. Alternatively, the DiI-labeled cells can be observed directly with confocal microscopy, …

research product

Subtypes of glial cells in the Drosophila embryonic ventral nerve cord as related to lineage and gene expression

In the Drosophila embryonic CNS several subtypes of glial cells develop, which arrange themselves at characteristic positions and presumably fulfil specific functions. The mechanisms leading to the specification and differentiation of glial subtypes are largely unknown. By DiI labelling in glia-specific Gal4 lines we have clarified the lineages of the lateral glia in the embryonic ventral nerve cord and linked each glial cell to a specific stem cell. For the lineage of the longitudinal glioblast we show that it consists of 9 cells, which acquire at least four different identities. A large collection of molecular markers (many of them representing transcription factors and potential Gcm targ…

research product

FlyMove – a new way to look at development of Drosophila

Development of any organism requires a complex interplay of genes to orchestrate the many movements needed to build up an embryo. Previously, work on Drosophila melanogaster has provided important insights that are often applicable in other systems. But developmental processes, which take place in space and time, are difficult to convey in textbooks. Here, we introduce FlyMove (http://flymove.uni-muenster.de), a new database combining movies, animated schemata, interactive "modules" and pictures that will greatly facilitate the understanding of Drosophila development.

research product

Neuroblast pattern and identity in the Drosophila tail region and role of doublesex in the survival of sex-specific precursors.

The central nervous system is composed of segmental units (neuromeres), the size and complexity of which evolved in correspondence to their functional requirements. In Drosophila, neuromeres develop from populations of neural stem cells (neuroblasts) that delaminate from the early embryonic neuroectoderm in a stereotyped spatial and temporal pattern. Pattern units closely resemble the ground state and are rather invariant in thoracic (T1-T3) and anterior abdominal (A1-A7) segments of the embryonic ventral nerve cord. Here, we provide a comprehensive neuroblast map of the terminal abdominal neuromeres A8-A10, which exhibit a progressively derived character. Compared with thoracic and anterio…

research product

Morphological Characterization of the Entire Interneuron Population Reveals Principles of Neuromere Organization in the Ventral Nerve Cord ofDrosophila

Decisive contributions to our understanding of the mechanisms underlying the development of the nervous system have been made by studies performed at the level of single, identified cells in the fruit flyDrosophila. While all the motor neurons and glial cells in thoracic and abdominal segments of theDrosophilaembryo have been individually identified, few of the interneurons, which comprise the vast majority of cells in the CNS, have been characterized at this level. We have applied a single cell labeling technique to carry out a detailed morphological characterization of the entire population of interneurons in abdominal segments A1–A7. Based on the definition of a set of spatial parameters…

research product

The Embryonic Central Nervous System Lineages ofDrosophila melanogaster

Abstract In Drosophila, central nervous system (CNS) formation starts with the delamination from the neuroectoderm of about 30 neuroblasts (NBs) per hemisegment. They give rise to approximately 350 neurons and 30 glial cells during embryonic development. Understanding the mechanisms leading to cell fate specification and differentiation in the CNS requires the identification of the NB lineages. The embryonic lineages derived from 17 NBs of the ventral part of the neuroectoderm have previously been described (Bossing et al., 1996). Here we present 13 lineages derived from the dorsal part of the neuroectoderm and we assign 12 of them to identified NBs. Together, the 13 lineages comprise appro…

research product

Programmed cell death in the embryonic central nervous system of Drosophila melanogaster.

Although programmed cell death (PCD) plays a crucial role throughout Drosophila CNS development, its pattern and incidence remain largely uninvestigated. We provide here a detailed analysis of the occurrence of PCD in the embryonic ventral nerve cord (VNC). We traced the spatio-temporal pattern of PCD and compared the appearance of, and total cell numbers in,thoracic and abdominal neuromeres of wild-type and PCD-deficient H99mutant embryos. Furthermore, we have examined the clonal origin and fate of superfluous cells in H99 mutants by DiI labeling almost all neuroblasts, with special attention to segment-specific differences within the individually identified neuroblast lineages. Our data r…

research product