6533b85afe1ef96bd12ba0d0
RESEARCH PRODUCT
Investigation of Temperature-Induced Phase Transitions in DOPC and DPPC Phospholipid Bilayers Using Temperature-Controlled Scanning Force Microscopy
Eric FinotH. MaZoya LeonenkoDavid T. CrambTanya E. S. Dahmssubject
Steric effectsPhase transition12-DipalmitoylphosphatidylcholineBiophysicsPhospholipid02 engineering and technologyMicroscopy Atomic Force010402 general chemistry01 natural sciencesPhase TransitionQuantitative Biology::Subcellular Processeschemistry.chemical_compoundTransition TemperaturePhospholipidsPhysics::Biological PhysicsMembranesBilayerTransition temperaturedigestive oral and skin physiologyBiological membrane021001 nanoscience & nanotechnology0104 chemical sciencesCondensed Matter::Soft Condensed MatterCrystallographyMembranechemistryChemical physicsDipalmitoylphosphatidylcholineAluminum Silicateslipids (amino acids peptides and proteins)0210 nano-technologydescription
Under physiological conditions, multicomponent biological membranes undergo structural changes which help define how the membrane functions. An understanding of biomembrane structure-function relations can be based on knowledge of the physical and chemical properties of pure phospholipid bilayers. Here, we have investigated phase transitions in dipalmitoylphosphatidylcholine (DPPC) and dioleoylphosphatidylcholine (DOPC) bilayers. We demonstrated the existence of several phase transitions in DPPC and DOPC mica-supported bilayers by both atomic force microscopy imaging and force measurements. Supported DPPC bilayers show a broad L(beta)-L(alpha) transition. In addition to the main transition we observed structural changes both above and below main transition temperature, which include increase in bilayer coverage and changes in bilayer height. Force measurements provide valuable information on bilayer thickness and phase transitions and are in good agreement with atomic force microscopy imaging data. A De Gennes model was used to characterize the repulsive steric forces as the origin of supported bilayer elastic properties. Both electrostatic and steric forces contribute to the repulsive part of the force plot.
year | journal | country | edition | language |
---|---|---|---|---|
2004-06-01 | Biophysical Journal |