0000000000165790
AUTHOR
Zoya Leonenko
Atomic Force Microscopy: Interaction Forces Measured in Phospholipid Monolayers, Bilayers, and Cell Membranes
Atomic force microscopy (AFM) is a powerful technique which is commonly used to image surfaces at the nanoscale and single-molecule level, as well as to investigate physical properties of the sample surface using a technique known as force spectroscopy. In this chapter, we review our recent research where we used AFM to investigate physical properties of phospholipid monolayers, bilayers, and cell membranes. We describe the experimental procedures for AFM imaging, force measurements, and theoretical models to analyze force spectroscopy data. The data obtained allowed correlations between AFM topography and local adhesion and mechanoelastic properties of supported lipid bilayers in water, su…
Effect of cholesterol on the physical properties of pulmonary surfactant films: Atomic force measurements study
International audience; Atomic force measurements were performed on supported pulmonary surfactant (PS) films to address the effect of cholesterol on the physical properties of lung surfactant films. We recently found that cholesterol in excess of a physiological proportion abolishes surfactant function, and is the reason that surfactant fails to lower the surface tension upon compression. In this study, we investigated how the loss of mechanical stability observed earlier is related to the local mechanical properties of the film by local force measurements. The presence of 20% of cholesterol in bovine lipid extract surfactant (BLES) resulted in a decrease of the observed adhesive interacti…
Adhesive interaction measured between AFM probe and lung epithelial type II cells
The toxicity of inhaled nanoparticles entering the body through the lung is thought to be initially defined by the electrostatic and adhesive interaction of the particles with lung's wall. Here, we investigated the first step of the interaction of nanoparticles with lung epithelial cells using atomic force microscope (AFM) as a force apparatus. Nanoparticles were modeled by the apex of the AFM tip and the forces of interaction between the tip and the cell analyzed over time. The adhesive force and work of adhesion strongly increased for the first 100 s of contact and then leveled out. During this time, the tip was penetrating deeply into the cell. It first crossed a stiff region of the cell…
Effect of Cholesterol on Electrostatics in Lipid−Protein Films of a Pulmonary Surfactant
We report the changes in the electrical properties of the lipid-protein film of pulmonary surfactant produced by excess cholesterol. Pulmonary surfactant (PS) is a complex lipid-protein mixture that forms a molecular film at the interface of the lung's epithelia. The defined molecular arrangement of the lipids and proteins of the surfactant film gives rise to the locally highly variable electrical surface potential of the interface, which becomes considerably altered in the presence of cholesterol. With frequency modulation Kelvin probe force microscopy (FM-KPFM) and force measurements, complemented by theoretical analysis, we showed that excess cholesterol significantly changes the electri…
Investigation of Temperature-Induced Phase Transitions in DOPC and DPPC Phospholipid Bilayers Using Temperature-Controlled Scanning Force Microscopy
Under physiological conditions, multicomponent biological membranes undergo structural changes which help define how the membrane functions. An understanding of biomembrane structure-function relations can be based on knowledge of the physical and chemical properties of pure phospholipid bilayers. Here, we have investigated phase transitions in dipalmitoylphosphatidylcholine (DPPC) and dioleoylphosphatidylcholine (DOPC) bilayers. We demonstrated the existence of several phase transitions in DPPC and DOPC mica-supported bilayers by both atomic force microscopy imaging and force measurements. Supported DPPC bilayers show a broad L(beta)-L(alpha) transition. In addition to the main transition …
AFM study of interaction forces in supported planar DPPC bilayers in the presence of general anesthetic halothane
International audience; In spite of numerous investigations, the molecular mechanism of general anesthetics action is still not well understood. It has been shown that the anesthetic potency is related to the ability of an anesthetic to partition into the membrane. We have investigated changes in structure, dynamics and forces of interaction in supported dipalmitoylphosphatidylcholine (DPPC) bilayers in the presence of the general anesthetic halothane. In the present study, we measured the forces of interaction between the probe and the bilayer using an atomic force microscope. The changes in force curves as a function of anesthetic incorporation were analyzed. Force measurements were in go…