6533b85bfe1ef96bd12ba2e6

RESEARCH PRODUCT

Analysis of the thermo-mechanical behaviour of the DEMO Water-Cooled Lithium Lead breeding blanket module under normal operation steady state conditions

A. Li PumaA. TincaniJ. AubertR. GiammussoG. BongiovìPierluigi ChiovaroP.a. Di MaioP. Arena

subject

Materials scienceDEMO reactor WCLL blanket Thermo-mechanicsaWater flowNuclear engineeringchemistry.chemical_elementDEMO reactorBlanket01 natural sciences010305 fluids & plasmas[SPI]Engineering Sciences [physics]Breeder (animal)0103 physical sciencesGeneral Materials Science010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringWCLL blanket;Thermo-mechanics;DEMO reactorSteady stateThermo-mechanicsMechanical EngineeringWater cooledThermo-mechanicFinite element methodWCLL blanketNuclear Energy and EngineeringchemistryLithiumThermo mechanical

description

Within the framework of DEMO R&D activities, a research cooperation has been launched between ENEA, the University of Palermo and CEA to investigate the thermo-mechanical behaviour of the outboard equatorial module of the DEMO1 Water-Cooled Lithium Lead (WCLL) blanket under normal operation steady state scenario. The research campaign has been carried out following a theoretical-computational approach based on the Finite Element Method (FEM) and adopting a qualified commercial FEM code. In particular, two different 3D FEM models (Model 1 and Model 2), reproducing respectively the central and the lateral poloidal-radial slices of the WCLL blanket module, have been set up. A particular attention has been paid to the modelling of water flow domain, within both the segment box channels and the breeder zone tubes, to simulate realistically the coolant-box thermal coupling. Results obtained are herewith reported and critically discussed. © 2015 Elsevier B.V. All rights reserved.

10.1016/j.fusengdes.2015.03.051http://dx.doi.org/10.1016/j.fusengdes.2015.03.051