6533b85bfe1ef96bd12ba954

RESEARCH PRODUCT

Bases and quasi-reflexivity in Fréchet spaces

Manuel Valdivia

subject

Mathematics::Functional AnalysisPure mathematicsBasis (linear algebra)Fréchet spaceGeneral MathematicsProduct (mathematics)Banach spaceMathematics::General TopologyCountable setSubspace topologyQuotientMathematics

description

A Frechet space E is quasi-reflexive if, either dim(E″/E) < ∞, or E″[β(E″,E′)]/E is isomorphic to ω. A Frechet space E is totally quasi-reflexive if every separated quotient is quasi-reflexive. In this paper we show, using Schauder bases, that E is totally quasi-reflexive if and only if it is isomorphic to a closed subspace of a countable product of quasi-reflexive Banach spaces. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

https://doi.org/10.1002/mana.200310266