6533b85bfe1ef96bd12baa83

RESEARCH PRODUCT

Microscopic structural and dynamic features in triphilic room temperature ionic liquids

Fabrizio Lo CelsoAlessandro TrioloUwe KeiderlingMan ZhaoGiovanni Battista AppetecchiOlga RussinaLorenzo GontraniEdward W. CastnerE. Simonetti

subject

Materials sciencetriphilicfluorousamphiphile02 engineering and technologyNeutron scattering010402 general chemistry01 natural scienceslcsh:Chemistrychemistry.chemical_compoundMolecular dynamicsneutronSettore CHIM/02mesoscopicmolecular dynamics (MD)ImideAlkylOriginal Researchionic liquidchemistry.chemical_classificationMesoscopic physicsStructural organizationfluorous tailRelaxation (NMR)neutron scatteringGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesChemistryFluorous tail; Ionic Liquid; Molecular dynamics (MD); Neutron scattering; Triphiliclcsh:QD1-999chemistryx-rayChemical physicsOthersIonic liquid0210 nano-technology

description

Here we report a thorough investigation of the microscopic and mesoscopic structural organization in a series of triphilic fluorinated room temperature ionic liquids, namely [1-alkyl, 3-methylimidazolium][(trifluoromethanesulfonyl)(nonafluorobutylsulfonyl)imide], with alkyl=ethyl, butyl, octyl ([C(n)mim][IM14], n = 2, 4, 8), based on the synergic exploitation of X-ray and Neutron Scattering and Molecular Dynamics simulations. This study reveals the strong complementarity between X-ray/neutron scattering in detecting the complex segregated morphology in these systems at mesoscopic spatial scales. The use of MD simulations delivering a very good agreement with experimental data allows us to gain a robust understanding of the segregated morphology. The structural scenario is completed with determination of dynamic properties accessing the diffusive behavior and a relaxation map is provided for [C(2)mim][IM14] and [C(8)mim][IM14], highlighting their natures as fragile glass formers.

10.3389/fchem.2019.00285http://www.cnr.it/prodotto/i/402728