Search results for "mesoscopic"

showing 10 items of 709 documents

Photoluminescence of Ga-face AlGaN/GaN single heterostructures

2001

Abstract The radiative recombination in Ga-face Al 0.30 Ga 0.70 N/GaN single heterostructures (SHs) was studied by photoluminescence (PL) measurements. An energy shift of the excitonic transitions toward higher energies was observed, indicating the presence of residual compressive strain in the GaN layer. In addition to these exciton lines, a broad band energetically localized between the exciton lines and the LO-phonon replica was noticed in the undoped SH. From its energy position, excitation power dependence, as well as temperature behaviour, we have attributed this luminescence to the H -band (HB), which is representative of the two-dimensional electron gas (2DEG) recombination.

PhotoluminescenceMaterials scienceCondensed matter physicsCondensed Matter::OtherMechanical EngineeringExcitonHeterojunctionCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsCondensed Matter::Materials ScienceMechanics of MaterialsGeneral Materials ScienceSpontaneous emissionFermi gasLuminescenceExcitationRecombinationMaterials Science and Engineering: B
researchProduct

Simultaneous readout of two charge qubits

2006

We consider a system of two solid state charge qubits, coupled to a single read-out device, consisting of a single-electron transistor (SET). The conductance of each tunnel junction is influenced by its neighboring qubit, and thus the current through the transistor is determined by the qubits' state. The full counting statistics of the electrons passing the transistor is calculated, and we discuss qubit dephasing, as well as the quantum efficiency of the readout. The current measurement is then compared to readout using real-time detection of the SET island's charge state. For the latter method we show that the quantum efficiency is always unity. Comparing the two methods a simple geometric…

PhysicsFlux qubitCharge qubitCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesOne-way quantum computerCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsPhase qubitComputer Science::Emerging TechnologiesQuantum error correctionQubitQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Superconducting quantum computingTrapped ion quantum computerPhysical Review B
researchProduct

Kondo Resonance in a Mesoscopic Ring Coupled to a Quantum Dot: Exact Results for the Aharonov-Bohm/Casher Effects

2000

We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a side-branch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.

General Physics and AstronomyFOS: Physical sciences02 engineering and technologyElectron01 natural sciencesResonance (particle physics)Bethe ansatzCondensed Matter - Strongly Correlated Electronssymbols.namesakeQuantum mechanics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsAharonov–Bohm effectPhysicsMesoscopic physicsCondensed Matter - Mesoscale and Nanoscale PhysicsNonlinear Sciences - Exactly Solvable and Integrable SystemsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Persistent currentQuantum Physics021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectQuantum dotsymbolsKondo effectExactly Solvable and Integrable Systems (nlin.SI)0210 nano-technology
researchProduct

Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale

2020

Schemes of gravitationally induced decoherence are being actively investigated as possible mechanisms for the quantum-to-classical transition. Here, we introduce a decoherence process due to quantum gravity effects. We assume a foamy quantum spacetime with a fluctuating minimal length coinciding on average with the Planck scale. Considering deformed canonical commutation relations with a fluctuating deformation parameter, we derive a Lindblad master equation that yields localization in energy space and decoherence times consistent with the currently available observational evidence. Compared to other schemes of gravitational decoherence, we find that the decoherence rate predicted by our mo…

High Energy Physics - TheoryLength scaleQuantum decoherenceScienceQuantum physicsGeneral Physics and AstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Quantum spacetime01 natural sciencesGeneral Relativity and Quantum CosmologyArticleGeneral Biochemistry Genetics and Molecular BiologyGravitation0103 physical sciencesMaster equation010306 general physicsQuantumCondensed Matter - Statistical MechanicsPhysicsMesoscopic physicsMultidisciplinaryStatistical Mechanics (cond-mat.stat-mech)010308 nuclear & particles physicsQGeneral ChemistryClassical mechanicsHigh Energy Physics - Theory (hep-th)Quantum gravityQuantum Physics (quant-ph)Theoretical physics
researchProduct

A 3D mesoscopic approach for discrete dislocation dynamics

2001

In recent years a noticeable renewed interest in modeling dislocations at the mesoscopic scale has been developed leading to significant advances in the field. This interest has arisen from a desire to link the atomistic and macroscopic length scales. In this context, we have recently developed a 3D-discrete dislocation dynamics model (DDD) based on a nodal discretization of the dislocations. We present here the basis of our DDD model and two examples of studies with single and multiple slip planes.

Mesoscopic physicsMaterials scienceScale (ratio)DiscretizationField (physics)Basis (linear algebra)Mechanical EngineeringDynamics (mechanics)Context (language use)Condensed Matter PhysicsCondensed Matter::Materials ScienceMechanics of MaterialsGeneral Materials ScienceStatistical physicsDislocationSimulationMaterials Science and Engineering: A
researchProduct

Domain wall junctions in a generalized Wess-Zumino model

1999

We investigate domain wall junctions in a generalized Wess-Zumino model with a Z(N) symmetry. We present a method to identify the junctions which are potentially BPS saturated. We then use a numerical simulation to show that those junctions indeed saturate the BPS bound for N=4. In addition, we study the decay of unstable non-BPS junctions.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsComputer simulationFOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSymmetry (physics)Wess–Zumino modelHigh Energy Physics::TheoryDomain wall (string theory)High Energy Physics - Theory (hep-th)Physics::Plasma PhysicsCondensed Matter::SuperconductivityAstrophysics::Solar and Stellar AstrophysicsMathematical physicsPhysics Letters B
researchProduct

Optical properties of wurtzite GaN/AlN quantum dots grown on non-polar planes: the effect of stacking faults in the reduction of the internal electri…

2016

The optical emission of non-polar GaN/AlN quantum dots has been investigated. The presence of stacking faults inside these quantum dots is evidenced in the dependence of the photoluminescence with temperature and excitation power. A theoretical model for the electronic structure and optical properties of non-polar quantum dots, taking into account their realistic shapes, is presented which predicts a substantial reduction of the internal electric field but a persisting quantum confined Stark effect, comparable to that of polar GaN/AlN quantum dots. Modeling the effect of a 3 monolayer stacking fault inside the quantum dot, which acts as zinc-blende inclusion into the wurtzite matrix, result…

Materials sciencePhotoluminescenceStackingFOS: Physical sciences02 engineering and technologyElectronic structure01 natural sciencessymbols.namesakeCondensed Matter::Materials ScienceMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesGeneral Materials Science[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]ComputingMilieux_MISCELLANEOUSWurtzite crystal structure010302 applied physics[PHYS]Physics [physics]Condensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsMechanical EngineeringQuantum-confined Stark effectCiència dels materials021001 nanoscience & nanotechnologyCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectStark effectMechanics of MaterialsQuantum dotsymbolsCristalls0210 nano-technologyStacking fault
researchProduct

Communication: anion-specific response of mesoscopic organization in ionic liquids upon pressurization

2018

One of the outstanding features of ionic liquids is their inherently hierarchical structural organization at mesoscopic spatial scales. Recently experimental and computational studies showed the fading of this feature when pressurising. Here we use simulations to show that this effect is not general: appropriate anion choice leads to an obstinate resistance against pressurization. Published by AIP Publishing.

Materials scienceneutron x-raycomputational studiesGeneral Physics and Astronomy010402 general chemistrystructural scale01 natural sciencesIonionic liquidsPhysics and Astronomy (all)chemistry.chemical_compoundCabin pressurizationSettore CHIM/02Mesoscopic spatial scalesionic liquidspressurisationmolecular dynamics0103 physical sciencesFadingPhysical and Theoretical Chemistrystructural organization; ionic liquids; structural scale; computational studies; mesoscopic organizationMesoscopic physicsStructural organization010304 chemical physicsstructural organization0104 chemical scienceschemistryChemical physicsFeature (computer vision)mesoscopic organizationIonic liquid
researchProduct

High accuracy Raman measurements using the Stokes and anti-Stokes lines

1997

We show that by measuring the separation between the Stokes and anti-Stokes peaks excited by two different laser lines we obtain a very precise determination of absolute phonon energies. The method is useful for measuring small changes of these energies with strain, temperature, laser power, etc. It doubles the changes and avoids the necessity of using the reference lines in the Raman spectra. The method can be applied for the determination of phonon deformation potentials, for the characterization of strained heteroepitaxial layers, and for micro-Raman analysis of strain in silicon integrated circuits. We give examples of phonon shifts in Si, Ge, GaAs, InAs, and GaP as a function of applie…

SiliconMaterials scienceSiliconRaman SpectraPhononAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_elementIndium CompoundsMolecular physicsGallium arsenidelaw.inventionGallium Arsenidesymbols.namesakechemistry.chemical_compoundThermo-Optical EffectsCondensed Matter::Materials Sciencelaw:FÍSICA [UNESCO]Laser power scalingSemiconductor Epitaxial LayersLaser Beam EffectsElemental SemiconductorsSilicon ; Germanium ; Elemental Semiconductors ; Gallium Arsenide ; Indium Compounds ; Gallium Compounds ; III-V Semiconductors ; Raman Spectra ; Phonon Spectra ; Semiconductor Epitaxial Layers ; Integrated Circuit Technology ; Deformation ; Laser Beam Effects ; Thermo-Optical EffectsGermaniumUNESCO::FÍSICAIII-V SemiconductorsPhonon SpectraLaserCondensed Matter::Mesoscopic Systems and Quantum Hall EffectIntegrated Circuit TechnologyDeformationchemistryExcited stateGallium CompoundssymbolsDeformation (engineering)Raman spectroscopy
researchProduct

Interlayer exciton dynamics in van der Waals heterostructures

2018

Exciton binding energies of hundreds of meV and strong light absorption in the optical frequency range make transition metal dichalcogenides (TMDs) promising for novel optoelectronic nanodevices. In particular, atomically thin TMDs can be stacked to heterostructures enabling the design of new materials with tailored properties. The strong Coulomb interaction gives rise to interlayer excitons, where electrons and holes are spatially separated in different layers. In this work, we reveal the microscopic processes behind the formation, thermalization and decay of these fundamentally interesting and technologically relevant interlayer excitonic states. In particular, we present for the exemplar…

Condensed Matter::Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall Effect
researchProduct