6533b85bfe1ef96bd12bab65

RESEARCH PRODUCT

Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise

M.n. KoryazhkinaD.o. FilatovV.a. ShishmakovaM.e. SheninaA.i. BelovI.n. AntonovV.e. KotominaA.n. MikhaylovO.n. GorshkovN.v. AgudovC. GuarcelloA. CarolloB. Spagnolo

subject

MetastabilityNoise-enhanced stabilizationResistive switching; Memristor; Yttria-stabilized zirconia; Metastability; Noise-enhanced stabilization; Constructive role of noiseSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciGeneral MathematicsApplied MathematicsConstructive role of noiseGeneral Physics and AstronomyStatistical and Nonlinear PhysicsResistive switchingMemristorYttria-stabilized zirconia

description

The effects of external digitally synthesized Gaussian noise on the resistive state relaxation time of a ZrO2(Y)-based memristive device when switching from a low resistance state to a high resistance state have been experimentally investigated. A nonmonotonic dependence of the resistive state relaxation time on the external noise intensity is found. This behavior is interpreted as a manifestation of the noise-enhanced stability effect previously observed in various complex systems with metastable states. It is shown that the experimental results agree satisfactorily with the theoretical ones. The presented results indicate the constructive role of external noise and its possible use as a mechanism for controlling the kinetics of resistive switching.

10.1016/j.chaos.2022.112459https://hdl.handle.net/10447/587671