6533b85bfe1ef96bd12bb6f7
RESEARCH PRODUCT
Cyano-bridged structures based on [MnIIN3O2-macrocycle)]2+: a synthetic, structural, and magnetic study.
Andreas SieberSilvio DecurtinsAntonia NeelsMaria-cristir A. SennaHelen Stoeckli-evansFederica BonadioJürgen Enslingsubject
Inorganic ChemistryCrystallographyChemistryStereochemistryCyanometalateMacrocyclic ligandPhysical and Theoretical ChemistryMagnetic studydescription
Reactions between the complex [MnII(L)]2+, where L is a N3O2 macrocyclic ligand, and different cyanometalate precursors such as [M(CN)n]m- (M(III) = Cr, Fe; M(II) = Fe, Ni, Pd, Pt) lead to cyano-bridged molecular assemblies exhibiting a variety of structural topologies. The reaction between [MnII(L)]2+ and [FeII(CN)6]4- forms a trinuclear complex with formula [(MnII(L)(H2O))2(FeII(micro-CN)2(CN)4)] x 2MeOH x 10H2O (1) which crystallizes in the triclinic space group P1. The reaction between [MnII(L)]2+ and [M(II)(CN)4]2-, where M(II) = Ni (2), Pd (3), Pt (4), gives rise to three isostructural linear chain compounds with stoichiometry [(MnII(L))(M(II)(micro-CN)2(CN)2)]n and which crystallize in the monoclinic space group C2/c. The self-assembly between [MnII(L)]2+ with [M(III)(CN)6]3-, where M(III) = Cr (5), Fe (6, 7, 8), forms three types of compounds. Compounds 5 and 6 are isostructural (monoclinic, space group P2(1)/n), and the structures comprise anionic linear chains [(MnII(L))(M(III)(micro-CN)2(CN)4)]n(n-) with cationic trinuclear complexes [(MnII(L)(H2O))2(M(III)(micro-CN)2(CN)4)]+ as counterions. Using an excess of K3[FeIII(CN)6], an analogous compound to 6 but with K+ as counterion is obtained (7), which crystallizes in the triclinic space group P1. Compound 8 consists of 2-D layers with formula [(MnII(L))3(FeIII(micro-CN)4(CN)2)(FeIII(micro-CN)2(CN)4)]n x 2nMeOH; it crystallizes in the monoclinic space group P2(1)/n. The magnetic properties were investigated for all samples. In particular, compound 5, which shows antiferromagnetic exchange interactions between Mn(II) and Cr(III) ions through cyanide bridging ligands, has been studied in detail; the magnetic exchange parameter amounts to J = -7.5(7) cm(-1). Compound 8 shows a magnetically ordered phase below 6.4 K which is confirmed by Mössbauer spectroscopy; two hyperfine split spectra were observed below Tc from which IJI values of 2.1 and 1.6 cm(-1) could be deduced.
year | journal | country | edition | language |
---|---|---|---|---|
2005-01-20 | Inorganic chemistry |