6533b85dfe1ef96bd12be7b2
RESEARCH PRODUCT
Inducible ASABF-Type Antimicrobial Peptide from the Sponge Suberites domuncula: Microbicidal and Hemolytic Activity in Vitro and Toxic Effect on Molluscs in Vivo
Michael KorzhevWerner E. G. M�llerRenato BatelHeinz C. SchröderMatthias WiensXiaohong Wangsubject
ASABFAntimicrobial peptidesGastropodaMolecular Sequence DataPharmaceutical SciencePeptideMicrobial Sensitivity TestsGram-Positive BacteriaReal-Time Polymerase Chain ReactionArticleMicrobiology03 medical and health sciencesantimicrobial peptidesAnti-Infective AgentsSequence Analysis ProteinDrug DiscoveryAnimalsBittium sp.Structural motiflcsh:QH301-705.5Pharmacology Toxicology and Pharmaceutics (miscellaneous)spongesPhylogeny030304 developmental biologychemistry.chemical_classification0303 health sciencesbiology030306 microbiologyEffectorHemolytic AgentsapoptosisGeologyBittium spsponges; <em>Suberites domuncula</em>; ASABF; antimicrobial peptides; apoptosis; <em>Bittium</em> sp.biology.organism_classificationSuberites domunculasponges ; Suberites domuncula ; ASABF ; antimicrobial peptides ; apoptosis ; Bittium sp.Recombinant ProteinsSuberites domunculaSpongeEnzymelcsh:Biology (General)chemistryMolluscaSuberitesSuberitesAntimicrobial Cationic Peptidesdescription
Since sponges, as typical filter-feeders, are exposed to a high load of attacking prokaryotic and eukaryotic organisms, they are armed with a wide arsenal of antimicrobial/cytostatic low-molecular-weight, non-proteinaceous bioactive compounds. Here we present the first sponge agent belonging to the group of ASABF-type antimicrobial peptides. The ASABF gene was identified and cloned from the demospongeSuberites domuncula. The mature peptide, with a length of 64 aa residues has a predicted pI of 9.24, and comprises the characteristic CSαβ structural motif. Consequently, the S. domuncula ASABF shares high similarity with the nematode ASABFs ; it is distantly related to the defensins. The recombinant peptide was found to display besides microbicidal activity, anti-fungal activity. In addition, the peptide lyses human erythrocytes. The expression ofASABF is upregulated after exposure to the apoptosis-inducing agent 2, 2'-dipyridyl. During the process of apoptosis of surface tissue of S. domuncula, grazing gastropods (Bittium sp.) are attracted by quinolinic acid which is synthesized through the kynurenine pathway by the enzyme 3-hydroxyanthranilate 3, 4-dioxygenase (HAD). Finally, the gastropods are repelled from the sponge tissue by the ASABF. It is shown that the effector peptide ASABF is sequentially expressed after the induction of the HAD gene and a caspase, as a central enzyme executing apoptosis.
year | journal | country | edition | language |
---|---|---|---|---|
2011-10-19 | Marine Drugs |