6533b85efe1ef96bd12bff1a

RESEARCH PRODUCT

The Antisense RNA Approach: a New Application for In Vivo Investigation of the Stress Response of Oenococcus oeni, a Wine-Associated Lactic Acid Bacterium

Tarek MsadekTarek MsadekMaud DarsonvalCosette GrandvaletHervé Alexandre

subject

0301 basic medicine[SDV.BIO]Life Sciences [q-bio]/Biotechnology[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutrition030106 microbiologyLactobacillus-plantarumWineEscherichia-coliApplied Microbiology and Biotechnologymolecular characterization03 medical and health sciencesGrowth-phaseBacterial ProteinsMembrane stabilizationHeat shock protein[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Antisense TechnologyGene expression[SDV.IDA]Life Sciences [q-bio]/Food engineeringMalolactic fermentationEnvironmental MicrobiologyRNA AntisenseGene-expressionLactic AcidHeat-Shock ProteinsOenococcusOenococcus oeniLeuconostoc-oenosEcologybiologyEthanolLactococcus lactisMalolactic fermentation[ SDV.BIO ] Life Sciences [q-bio]/BiotechnologyGene Expression Regulation Bacterialbiology.organism_classification[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyAntisense RNABiochemistryLactococcus-lactisHeat-shock-proteinFermentationOenococcusFood ScienceBiotechnology

description

ABSTRACT Oenococcus oeni is a wine-associated lactic acid bacterium mostly responsible for malolactic fermentation in wine. In wine, O. oeni grows in an environment hostile to bacterial growth (low pH, low temperature, and ethanol) that induces stress response mechanisms. To survive, O. oeni is known to set up transitional stress response mechanisms through the synthesis of heat stress proteins (HSPs) encoded by the hsp genes, notably a unique small HSP named Lo18. Despite the availability of the genome sequence, characterization of O. oeni genes is limited, and little is known about the in vivo role of Lo18. Due to the lack of genetic tools for O. oeni , an efficient expression vector in O. oeni is still lacking, and deletion or inactivation of the hsp18 gene is not presently practicable. As an alternative approach, with the goal of understanding the biological function of the O. oeni hsp18 gene in vivo , we have developed an expression vector to produce antisense RNA targeting of hsp18 mRNA. Recombinant strains were exposed to multiple stresses inducing hsp18 gene expression: heat shock and acid shock. We showed that antisense attenuation of hsp18 affects O. oeni survival under stress conditions. These results confirm the involvement of Lo18 in heat and acid tolerance of O. oeni . Results of anisotropy experiments also confirm a membrane-protective role for Lo18, as previous observations had already suggested. This study describes a new, efficient tool to demonstrate the use of antisense technology for modulating gene expression in O. oeni .

10.1128/aem.02495-15https://europepmc.org/articles/PMC4702648/