6533b85ffe1ef96bd12c1270

RESEARCH PRODUCT

Tensorization of quasi-Hilbertian Sobolev spaces

Sylvester Eriksson-biqueTapio RajalaElefterios Soultanis

subject

Mathematics - Differential Geometrymetric measure spacesDirichlet formsminimal upper gradientFunctional Analysis (math.FA)Mathematics - Functional Analysistensorization46E36 (Primary) 31C25 (Secondary)Differential Geometry (math.DG)Sobolev spacesFOS: Mathematicsanalysis on metric spacespotentiaaliteoriafunktionaalianalyysi

description

The tensorization problem for Sobolev spaces asks for a characterization of how the Sobolev space on a product metric measure space $X\times Y$ can be determined from its factors. We show that two natural descriptions of the Sobolev space from the literature coincide, $W^{1,2}(X\times Y)=J^{1,2}(X,Y)$, thus settling the tensorization problem for Sobolev spaces in the case $p=2$, when $X$ and $Y$ are infinitesimally quasi-Hilbertian, i.e. the Sobolev space $W^{1,2}$ admits an equivalent renorming by a Dirichlet form. This class includes in particular metric measure spaces $X,Y$ of finite Hausdorff dimension as well as infinitesimally Hilbertian spaces. More generally for $p\in (1,\infty)$ we obtain the norm-one inclusion $\|f\|_{J^{1,p}(X,Y)}\le \|f\|_{W^{1,p}(X\times Y)}$ and show that the norms agree on the algebraic tensor product $W^{1,p}(X)\otimes W^{1,p}(Y)\subset W^{1,p}(X\times Y)$. When $p=2$ and $X$ and $Y$ are infinitesimally quasi-Hilbertian, standard Dirichlet form theory yields the density of $W^{1,2}(X)\otimes W^{1,2}(Y)$ in $J^{1,2}(X,Y)$ thus implying the equality of the spaces. Our approach raises the question of the density of $W^{1,p}(X)\otimes W^{1,p}(Y)$ in $J^{1,p}(X,Y)$ in the general case.

https://dx.doi.org/10.48550/arxiv.2209.03040