6533b85ffe1ef96bd12c1d6c
RESEARCH PRODUCT
Targeting V-ATPase in primary human monocytes by archazolid potently represses the classical secretion of cytokines due to accumulation at the endoplasmic reticulum
Rolf MüllerOlga SchererDagmar BarzDirk MencheCarlo PergolaChristoph KaetherHeinrich SteinmetzOliver WerzChristina WeinigelHartmut Kleinertsubject
Vacuolar Proton-Translocating ATPasesmedicine.medical_specialtyp38 mitogen-activated protein kinasesInflammationBiologyEndoplasmic ReticulumBiochemistryMonocytesCell Linechemistry.chemical_compoundInternal medicinemedicineHumansSecretionPhosphorylationProtein kinase BDNA PrimersPharmacologyBase SequenceDose-Response Relationship DrugReverse Transcriptase Polymerase Chain ReactionEndoplasmic reticulumBafilomycinCell biologyIκBαEndocrinologySecretory proteinMicroscopy FluorescencechemistryCytokinesMacrolidesmedicine.symptomSignal Transductiondescription
The macrolide archazolid inhibits vacuolar-type H(+)-ATPase (V-ATPase), a proton-translocating enzyme involved in protein transport and pH regulation of cell organelles, and potently suppresses cancer cell growth at low nanomolar concentrations. In view of the growing link between inflammation and cancer, we investigated whether inhibition of V-ATPase by archazolid may affect primary human monocytes that can promote cancer by sustaining inflammation through the release of tumor-promoting cytokines. Human primary monocytes express V-ATPase, and archazolid (10-100nM) increases the vesicular pH in these cells. Archazolid (10nM) markedly reduced the release of pro-inflammatory (TNF-α, interleukin-6 and -8) but also of anti-inflammatory (interleukin-10) cytokines in monocytes stimulated with LPS, without affecting cell viability up to 1000nM. Of interest, secretion of interleukin-1β was increased by archazolid. Comparable effects were obtained by the V-ATPase inhibitors bafilomycin and apicularen. The phosphorylation of p38 MAPK and ERK-1/2, Akt, SAPK/JNK or of the inhibitor of NFκB (IκBα) as well as mRNA expression of IL-8 were not altered by archazolid in LPS-stimulated monocytes. Instead, archazolid caused endoplasmic reticulum (ER) stress response visualized by increased BiP expression and accumulation of IL-8 (and TNF-α) at the ER, indicating a perturbation of protein secretion. In conclusion, by interference with V-ATPase, archazolid significantly affects the secretion of cytokines due to accumulation at the ER which might be of relevance when using these agents for cancer therapy.
year | journal | country | edition | language |
---|---|---|---|---|
2014-10-15 | Biochemical Pharmacology |