6533b860fe1ef96bd12c3143

RESEARCH PRODUCT

Ionizing radiation but not anticancer drugs causes cell cycle arrest and failure to activate the mitochondrial death pathway in MCF-7 breast carcinoma cells.

Bernd KainaAlan G. PorterKlaus Schulze-osthoffIngo H. EngelsTorsten R DunkernReiner U. Jänicke

subject

Cancer ResearchCell cycle checkpointAntineoplastic AgentsApoptosisBreast NeoplasmsDNA FragmentationMitochondrionHeLaTransformation GeneticRadiation IonizingGeneticsTumor Cells CulturedHumansMolecular BiologyCaspaseEtoposidebiologyCaspase 3CarcinomaCell CycleMicrofilament ProteinsDNA NeoplasmCell cyclebiology.organism_classificationCaspase 9MitochondriaApoptosisCell cultureDoxorubicinCaspasesImmunologyCancer researchbiology.proteinDNA fragmentationFemaleCarrier ProteinsDNA DamageHeLa Cells

description

There is considerable evidence that ionizing radiation (IR) and chemotherapeutic drugs mediate apoptosis through the intrinsic death pathway via the release of mitochondrial cytochrome c and activation of caspases -9 and -3. Here we show that MCF-7 cells that lack caspase-3 undergo a caspase-dependent apoptotic cell death in the absence of DNA fragmentation and alpha-fodrin cleavage following treatment with etoposide or doxorubicin, but not after exposure to IR. Re-expression of caspase-3 restored DNA fragmentation and alpha-fodrin cleavage following drug treatment, but it did not alter the radiation-resistant phenotype of these cells. In contrast to the anticancer drugs, IR failed to induce the intrinsic death pathway in MCF-7/casp-3 cells, an event readily observed in IR-induced apoptosis of HeLa cells. Although IR-induced DNA double-strand breaks were repaired with similar efficiencies in all cell lines, cell cycle analyses revealed a persistent G2/M arrest in the two MCF-7 cell lines, but not in HeLa cells. Together, our data demonstrate that caspase-3 is required for DNA fragmentation and alpha-fodrin cleavage in drug-induced apoptosis and that the intrinsic death pathway is fully functional in MCF-7 cells. Furthermore, they show that the radiation-resistant phenotype of MCF-7 cells is not due to the lack of caspase-3, but is caused by the failure of IR to activate the intrinsic death pathway. We propose (1) different signaling pathways are induced by anticancer drugs and IR, and (2) IR-induced G2/M arrest prevents the generation of an apoptotic signal required for the activation of the intrinsic death pathway.

10.1038/sj.onc.1204659https://pubmed.ncbi.nlm.nih.gov/11526489