0000000000243732

AUTHOR

Klaus Schulze-osthoff

Keratinocyte-derived IκBζ drives psoriasis and associated systemic inflammation.

The transcriptional activator IκBζ is a key regulator of psoriasis, but which cells mediate its pathogenic effect remains unknown. Here we found that IκBζ expression in keratinocytes triggers not only skin lesions but also systemic inflammation in mouse psoriasis models. Specific depletion of IκBζ in keratinocytes was sufficient to suppress the induction of imiquimod- or IL-36–mediated psoriasis. Moreover, IκBζ ablation in keratinocytes prevented the onset of psoriatic lesions and systemic inflammation in keratinocyte-specific IL-17A–transgenic mice. Mechanistically, this psoriasis protection was mediated by IκBζ deficiency in keratinocytes abrogating the induction of specific proinflammato…

research product

Abstract LB-287: Identification of patients at risk for tumor predisposition syndromes based on the evaluation of sporadic cancer exome sequencing data: experiences from the NCT/DKTK MASTER program

Abstract The MASTER (Molecularly Aided Stratification for Tumor Eradication Research) Program of the NCT (National Center for Tumor Diseases) Heidelberg and the DKTK (German Cancer Consortium) is situated at the interface of cancer genomics and clinical oncology to provide whole exome/genome and transcriptome sequencing to selected patients with unmet medical need, and to evaluate the utility of such an approach regarding molecular stratification and individualized, biology-guided treatment. The program has enabled implementation of a shared, DKTK-wide workflow for rapid-turnaround clinical sequencing, comprising all steps from sample processing to reporting of results by a dedicated molecu…

research product

Validating comprehensive next-generation sequencing results for precision oncology : The NCT/DKTK molecularly aided stratification for tumor eradication research experience

Purpose Rapidly evolving genomics technologies, in particular comprehensive next-generation sequencing (NGS), have led to exponential growth in the understanding of cancer biology, shifting oncology toward personalized treatment strategies. However, comprehensive NGS approaches, such as whole-exome sequencing, have limitations that are related to the technology itself as well as to the input source. Hence, clinical implementation of comprehensive NGS in a quality-controlled diagnostic workflow requires both the standardization of sequencing procedures and continuous validation of sequencing results by orthogonal methods in an ongoing program to enable the determination of key test parameter…

research product

Comprehensive Genomic and Transcriptomic Analysis for Guiding Therapeutic Decisions in Patients with Rare Cancers

Abstract The clinical relevance of comprehensive molecular analysis in rare cancers is not established. We analyzed the molecular profiles and clinical outcomes of 1,310 patients (rare cancers, 75.5%) enrolled in a prospective observational study by the German Cancer Consortium that applies whole-genome/exome and RNA sequencing to inform the care of adults with incurable cancers. On the basis of 472 single and six composite biomarkers, a cross-institutional molecular tumor board provided evidence-based management recommendations, including diagnostic reevaluation, genetic counseling, and experimental treatment, in 88% of cases. Recommended therapies were administered in 362 of 1,138 patient…

research product

Distinct immune evasion in APOBEC-enriched, HPV-negative HNSCC

Immune checkpoint inhibition leads to response in some patients with head and neck squamous cell carcinoma (HNSCC). Robust biomarkers are lacking to date. We analyzed viral status, gene expression signatures, mutational load and mutational signatures in whole exome and RNA-sequencing data of the HNSCC TCGA dataset (N = 496) and a validation set (DKTK MASTER cohort, N = 10). Public single-cell gene expression data from 17 HPV-negative HNSCC were separately re-analyzed. APOBEC3-associated TCW motif mutations but not total single nucleotide variant burden were significantly associated with inflammation. This association was restricted to HPV-negative HNSCC samples. An APOBEC-enriched, HPV-nega…

research product

Distinct immune evasion in APOBEC ‐enriched, HPV ‐negative HNSCC

Immune checkpoint inhibition leads to response in some patients with head and neck squamous cell carcinoma (HNSCC). Robust biomarkers are lacking to date. We analyzed viral status, gene expression signatures, mutational load and mutational signatures in whole exome and RNA-sequencing data of the HNSCC TCGA dataset (n = 496) and a validation set (DKTK MASTER cohort, n = 10). Public single-cell gene expression data from 17 HPV-negative HNSCC were separately reanalyzed. APOBEC3-associated TCW motif mutations but not total single nucleotide variant burden were significantly associated with inflammation. This association was restricted to HPV-negative HNSCC samples. An APOBEC-enriched, HPV-negat…

research product

Ionizing radiation but not anticancer drugs causes cell cycle arrest and failure to activate the mitochondrial death pathway in MCF-7 breast carcinoma cells.

There is considerable evidence that ionizing radiation (IR) and chemotherapeutic drugs mediate apoptosis through the intrinsic death pathway via the release of mitochondrial cytochrome c and activation of caspases -9 and -3. Here we show that MCF-7 cells that lack caspase-3 undergo a caspase-dependent apoptotic cell death in the absence of DNA fragmentation and alpha-fodrin cleavage following treatment with etoposide or doxorubicin, but not after exposure to IR. Re-expression of caspase-3 restored DNA fragmentation and alpha-fodrin cleavage following drug treatment, but it did not alter the radiation-resistant phenotype of these cells. In contrast to the anticancer drugs, IR failed to induc…

research product