6533b860fe1ef96bd12c3abe
RESEARCH PRODUCT
Structural performances of pultruded GFRP emergency structures – Part 2: Full-scale experimental testing
M. Di PaolaAntonino ValenzaLiborio CavaleriM.f. Ferrottosubject
Computer scienceFull scale02 engineering and technologyExperimental testing0203 mechanical engineeringEmergency structureLimit (music)Glass fibers reinforced polymers pultruded profilePultrusionBearing capacityCivil and Structural EngineeringFull-scale experimental testingbusiness.industryFrame (networking)Glass fiber reinforced polymerStructural engineeringFibre-reinforced plastic021001 nanoscience & nanotechnologySettore ICAR/09 - Tecnica Delle CostruzioniSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali020303 mechanical engineering & transportsPultrusionComposite structureCeramics and Composites0210 nano-technologybusinessdescription
Abstract This paper presents an experimental testing of a pultruded glass fiber reinforced polymer (FRP) structure used for emergency applications continuing the discussion presented in a previous paper (part 1) where the study of the characteristics of material and elements are presented. First, the design of the composite structure and components and the evaluation of the structural behavior by means of numerical and analytical approach according to current regulatory codes are described. In this frame, the global and local response was observed according to load paths deriving from the design loads at limit states. Then, the experimental test on a full-scale 2D model is presented at different load configurations up to the failure of the composite structure, comparing the experimental results with the load capacity predicted by the numerical model. The results indicate that the high performances of the structure provide a very good capacity in view of facing service loads and also in extreme conditions. Moreover, it was observed that the actual capacity obtained by the experimental test is much higher compared to the bearing capacity provided by the design according to current technical codes.
year | journal | country | edition | language |
---|---|---|---|---|
2019-04-01 | Composite Structures |