0000000000135176
AUTHOR
M.f. Ferrotto
Vibration Tests and Structural Identification of the Bell Tower of Palermo Cathedral
Background: The recent seismic events in Italy have underlined once more the need for seismic prevention for historic constructions of architectural interest and in general, the building heritage. During the above-mentioned earthquakes, different masonry monumental buildings have been lost due to the intrinsic vulnerability and ageing that reduced the structural member strength. This has made the community understand more that prevention is a necessary choice for the protection of monuments. Objective: The paper aims at demonstrating a strategy of investigation providing the possibility of health judgment, identifying a computational model for the assessment of structural capacity under se…
Solutions for the Design and Increasing of Efficiency of Viscous Dampers
In last decades many strategies for seismic vulnerability mitigation of structures have been studied and experimented; in particular energy dissipation by external devices assumes a great importance for the relative simplicity and efficacy. Among all possible approaches the use of fluid viscous dampers are very interesting, because of their velocity-dependent behaviour and relatively low costs. Application on buildings requires a specific study under seismic excitation and a particular attention on structural details. Nevertheless seismic codes give only general information and in most case the design of a such protection systems results difficult; this problem is relevant also in Italy whe…
Empirical Equations for the Direct Definition of Stress–Strain Laws for Fiber-Section-Based Macromodeling of Infilled Frames
Equivalent strut macromodels are largely used to model the influence of infill walls in frame structures due to their simplicity and effectiveness from a computational point of view. Despite these advantages, which are fundamental to carrying out seismic simulation of complex structures, equivalent struts are phenomenological models and therefore have to conventionally account for the influence of really large amounts of geometrical and mechanical variables with a relatively simple inelastic response. Mechanical approaches, generally used to evaluate the force-displacement curve of a strut, are based on hypothesizing the damage mechanism that will occur for an infill-frame system subject to…
A strategy for the finite element modeling of FRP-confined concrete columns subjected to preload
Abstract Compressive behavior of columns strengthened by means of an outer elastic confinement provided e.g. by fiber-reinforced polymer (FRP) jackets has become a main topic in the field of structural retrofitting. In details, the problem of the response assessment of strengthened columns is still under study. Many analytical formulations have been proposed to describe the compressive behavior of confined concrete under both monotonic and cyclic loads. However, the effect of a stress/strain level in the columns already present prior to apply the confinement has been generally neglected until now, also because of the lack of well defined strategies of modeling. In this frame, here, (1) a FE…
Structural performances of pultruded GFRP emergency structures – Part 1: Experimental characterization of materials and substructure
Abstract This paper presents an experimental study in the field of structures made of pultruded fiber reinforced polymers (FRP) elements to be used for emergency purposes. A preliminary design of a 3D pultruded glass fiber reinforced polymer structure is presented with the mechanical characterization of the constituting elements. The axial and flexural properties of laminate and I-shaped GRFP profiles are discussed considering the short term creep. In a companion paper, the benefits, the limits and the reliability of the structure analyzed for emergency applications are discussed. In details, the numerical structural analysis of the full-scale 3D model is described followed by the experimen…
Masonry structures: A proposal of analytical generation of fragility functions for tsunami impact – Application to the Mediterranean coasts
Abstract Evaluation of tsunami vulnerability of coastal buildings is gaining high interest in recent years in the areas with high tsunami hazard. Fragility evaluation is a fundamental step to obtain a quantitative estimation of the probability of building damage and in order to define possible strategies for risk mitigation. Several empirical fragility curves are available for masonry structures. However, an empirical fragility curve is generally based on field surveys after tsunami events, not always available. Conversely, analytical fragility curves are based on prediction approaches. In this paper, a proposal for the evaluation of analytical fragility curves for masonry structures typica…
Nonlinear Response of RC Structures: Statistical Effects of Artificial Ground Motions
The selection of seismic inputs for nonlinear dynamic analysis is widely debated, mainly focusing on the advantages and disadvantages provided by the choice of natural, simulated or artificial records. However, most of the available technical codes do not provide always the same suggestions and well-defined procedures for the generation of artificial ground motions. Considering that the strategy of the generation of accelerograms makes some doubts raise about the possible effect on the structural response, the work aims to investigate on the differences of the structural behavior by using accelerograms nominally equivalent but different in terms of stationarity. This paper presents a compar…
Efficiency of Stress-Strain Models of Confined Concrete With and Without Steel Jacketing to Reproduce Experimental Results
The improvement and the capacity assessment of existing buildings has become the main topic of the last years so that different studies can be found devoted to damaged structures or structures not having a capacity compatible with the safety levels of the actual codes. Reinforced concrete framed structure buildings represent a conspicuous rate of the existing constructions so many efforts are addressed to them. Referring to this type of buildings, a good prediction of strength and deformation capacity requests models able to interpret the constitutive law of concrete confined by internal reinforcement or by eventual external reinforcement applied to increase capacity of cross-sections. Cons…
Flexural Response of RC Beams Failing in Shear
In this paper, an analytical model to determine the flexural response of simply supported RC beams under four-point bending tests failing in flexure and shear is presented. The model is able to provide load-deflection curves, including also the shear contributions, which are determined assuming a kinematic rigid plastic model able to consider different strength contributions such as the concrete, the dowel action, and transverse reinforcement with progressive yielding. For each contribution, a physical explanation is provided to link the strength evaluation with a specific kinematic evolution for the determination of the overall response of RC beams under combined shear and flexural loads. …
Compressive response of substandard steel-jacketed RC columns strengthened under sustained service loads: From the local to the global behavior
Abstract This paper presents an experimental investigation on substandard partially steel jacketed RC columns strengthened under sustained loads and loaded until failure. The aim of the study is to compare the compressive response of preloaded columns with respect to the tests without preload to obtain a more realistic prediction of load-carrying capacity of structural columns after retrofitting under serviceability loads. The influence of the preload level, the delayed contribution of the confining device during the loading process and the time dependent effects are highlighted for the tested specimens. Based on the experimental observations, an analysis-oriented model is proposed for the …
Prediction Equations for Out-of-Plane Capacity of Unreinforced Masonry Infill Walls Based on a Macroelement Model Parametric Analysis
In the seismic performance assessment of reinforced concrete (RC) frames, a reliable estimation of the capacity of unreinforced masonry (URM) infill walls is of utmost importance to ensure structural safety conditions. With particular attention to the out- of-plane (OoP) capacity of URM infill walls after in-plane (IP) damage, the issue of defining reliable analytical prediction models for the assessment of the capacity is an ongoing study. In this paper, empirical equations are proposed for the evaluation of the infilled frame’s OoP capacity, with or without IP damage, based on an extensive numerical parametric analysis, focusing on the influence of the key parameters that govern the mecha…
Strategies of Identification of a Base-Isolated Hospital Building by Coupled Quasi-Static and Snap-Back Tests
In this paper, the description of a series of quasi-static pushing tests and dynamic snap-back tests is proposed, involving the base-isolated emergency building of the Palermo university hospital. The base isolation system is characterized by a set of double-curved friction pendulum isolators placed on the top of the columns of the underground level, characteristics that cannot be found in the experimental studies available in the literature. The aim of the work was to investigate the static and dynamic properties of the building in question and comparing the in-situ results with the characteristics assigned during the design process and to assess the level of agreement. Static lateral push…
Equivalent Non-Linearization of Hysteretic Systems by Means of RPS
BackgroundThe analysis of elastoplastic systems with hardening (Bouc-Wen systems) under stochastic (seismic) loads needs the evaluation of higher order statistics even in the simplest case of normal distributed input. ObjectiveIn this paper, a non-linearization technique is proposed in order to evaluate the moments of any order of the response. MethodThis technique is developed by means of a nonlinear class of systems whose statistics are a priori known. The parameters of such systems can be chosen in such a way that the two systems are equivalent in a wide sense. Result & ConclusionIn the paper, the strategy to obtain the equivalence and the reliability of the results are discussed.
Analysis-oriented stress–strain model of CRFP-confined circular concrete columns with applied preload
The compressive behavior of FRP-confined concrete is a current issue in the field of structural retrofitting. The available models well predict the stress–strain behavior under monotonic and cyclic loads. However, in the practical applications, columns that need an increasing of bearing capacity are often strengthened under serviceability load conditions, with a stress and strain state that could change the response of the reinforced systems with respect to the case of the unloaded state. In this paper, the compressive behavior of circular FRP-confined concrete columns with preload is analyzed with the introduction of a modified analysis-oriented model. Differently from the classical formul…
Frictional effects in structural behavior of no-end-connected steel-jacketed RC columns: Experimental results and new approaches to model numerical and analytical response
Steel jacketing of reinforced concrete (RC) columns is a common retrofitting technique used to restore bearing and deformation capacity of buildings presenting structural deficiencies. For practical reasons, steel angles are in several cases arranged leaving a gap with the end beams or slabs. Despite this disconnection, the angles are still able to support a non-negligible portion of load because of the frictional forces developed along the column-angle contact interface. In these cases, the definition of computational numerical and analytical models for the assessment of reinforced cross sections becomes more complex and must be handled with care. The actual load-carrying capacity of the a…
Compressive behavior of FRP externally wrapped R.C. column with buckling effects of longitudinal bars
Abstract In this paper, a calculation model to simulate the compressive behavior of R.C. columns with square cross-sections externally wrapped with FRP, including buckling effects of the longitudinal bars and reduction of the confinement pressure induced by the buckled compressed bars, is presented and discussed. The model distinguishes the cases of corner and side bars, calculating the different critical lengths and the critical loads. The Teng et al. (2009) model was adopted to predict the compressive behavior of FRP-confined concrete, and the Dhakal and Maekawa (2002) model was taken into account to predict the compressive behavior of longitudinal bars. The critical length and critical s…
Masonry structures subjected to tsunami loads: Modeling issues and application to a case study
Abstract Tsunamis are among the most dangerous natural disasters for coastal areas experiencing tsunami hazard. One of the major concerns in the assessment of strategies for the risk mitigation is to estimate vulnerability of structures and infrastructures. However, reliable approaches for the evaluation of the structural capacity under tsunami loads are nowadays not always available for all the types of structures, especially masonry. On this aim, the paper deals with the modeling issues of 3D masonry structures subjected to tsunami loads and the effect on the structural behavior of different modeling approaches. First, a brief state of the art on the available studies is presented regardi…
Full scale tests of the base-isolation system for an emergency hospital
The paper presents the results of some full-scale tests regarding the base-isolation system of the emergency room building of the polyclinic hospital in Palermo (Italy). This building has been recently realized and its base isolation system is characterized by double friction pendulum isolators. Static lateral pushing tests were aimed at identifying fundamental mechanical properties of the whole isolation level (e.g. friction forces and stiffness) in order to verify the agreement with the design hypotheses. Further dynamic tests provided different displacements of the isolated base followed by the instantaneous release (snap-back tests), in order to verify the effectiveness, the mechanical …
Artificial Ground Motions and Nonlinear Response of RC Structures
The selection of seismic inputs for nonlinear dynamic analysis is widely debated, mainly focusing on the advantages and disadvantages provided by the choice of natural, simulated, or artificial records. This work proves the differences in the structural behavior of RC buildings when using accelerograms with different levels of stationarity. Initially, nonlinear response under three sets of accelerograms equivalent in terms of pseudo acceleration spectrum is evaluated and compared. Then, the results of incremental dynamic analyses are compared by the statistical point of view considering different levels of irregularity for the reference structure.
A new hybrid procedure for the definition of seismic vulnerability in Mediterranean cross-border urban areas
Assessment of seismic vulnerability of urban areas provides fundamental information for activities of planning and management of emergencies. The main difficulty encountered when extending vulnerability evaluations to urban contexts is the definition of a framework of assessment appropriate for the specific characteristics of the site and providing reliable results with a reasonable duration of surveys and post-processing of data. The paper proposes a new procedure merging different typologies of information recognized on the territories investigated and for this reason called “hybrid.” Knowledge of historical events influencing urban evolution and analysis of recurrent building technologie…
Seismic behavior of structures equipped with variable friction dissipative (VFD) systems
Usually, to mitigate the stresses in framed structures, different strategies are used. Among them, base isolation, viscous/friction/metallic yielding dampers and tuned mass dumpers have been widely investigated. Fluid Viscous Dampers (FVD) probably result the most diffused for the simplicity in the applications. However, these type of dampers request limited interstorey drifts to avoid dangerous effects. Further, they have an elevate cost. On the contrary, friction dampers are not so expensive but request high interstorey drifts to give a significant contribute in the dissipation of energy during an earthquake. In this paper an approach for the energy dissipation by friction, modified with …
Experimental investigation on the compressive behavior of short-term preloaded carbon fiber reinforced polymer-confined concrete columns
Strengthening of concrete columns with fiber reinforced polymer sheets provides a good improvement to the existing structural members in terms of load and strain capacity due to the properties of the composite jacket. A proper knowledge of the load–strain response of the composite members is necessary to design retrofitting intervention of existing structures; however, so far the available design methods do not allow to take into account the effect of the possible presence of service loads on the compressive behavior of the reinforced columns. An experimental investigation on the compressive behavior of preloaded circular concrete columns reinforced with carbon fiber reinforced polymer was …
Structural Performances of Composite Pultruded GFRP Emergency Structures
The use of composite FRP pultruded elements in civil constructions is nowadays widely accepted as a valid alternative to classic materials. In the case of emergency applications (as for temporary shelter after earthquakes, floods and all disastrous), the lightness, ease of transport, assembly, safety of use, possibility of disassembly and reuse are key aspects that composite FRP structures can provide easily.
Optimal design algorithm for seismic retrofitting of RC columns with steel jacketing technique
Abstract Steel jacketing (SJ) of beams and columns is widely employed as retrofitting technique to provide additional deformation and strength capacity to existing reinforced concrete (RC) frame structures. The latter are many times designed without considering seismic loads, or present inadequate seismic detailing. The use of SJ is generally associated with non-negligible costs depending on the amount of structural work and non-structural manufacturing and materials. Moreover, this kind of intervention results in noticeable downtime for the building. This paper presents a new optimization framework which is aimed at obtaining minimization of retrofitting costs by optimizing the position an…
Structural performances of pultruded GFRP emergency structures – Part 2: Full-scale experimental testing
Abstract This paper presents an experimental testing of a pultruded glass fiber reinforced polymer (FRP) structure used for emergency applications continuing the discussion presented in a previous paper (part 1) where the study of the characteristics of material and elements are presented. First, the design of the composite structure and components and the evaluation of the structural behavior by means of numerical and analytical approach according to current regulatory codes are described. In this frame, the global and local response was observed according to load paths deriving from the design loads at limit states. Then, the experimental test on a full-scale 2D model is presented at diff…
Moment-Axial Domain of Corroded R.C. Columns
In the present paper, a simplified model to determine the moment-axial force domain of the cross-section of reinforced concrete columns subjected to corrosion process is presented. The model considers members with square and rectangular cross-sections and it accounts for cover spalling, buckling of longitudinal reinforcing bars, loss of bond of bar in tension, reduction of confinement pressures (due to the reduction of the area of stirrups and cracking of concrete induced by rust formation). The analytical expressions for prediction of the area reduction of steel, bond strength and critical load of longitudinal bars utilized were verified against experimental data available literature.
Moment-axial force domain of corroded R.C. columns
In the present paper, a simple model to determine the moment-axial force domain of the cross-section of reinforced concrete (R.C.) columns subjected to corrosion process is presented. The model considers members with square and rectangular cross-sections and it accounts for—cover spalling; buckling of longitudinal reinforcing bars; loss of bond of bar in tension; reduction of confinement pressures (due to the reduction of the area of stirrups and cracking of concrete induced by rust formation). The analytical expressions for prediction of the area reduction of steel, bond strength and critical load of longitudinal bars utilized were verified against experimental data available in the litera…