6533b862fe1ef96bd12c6100

RESEARCH PRODUCT

Measurements of the absolute branching fractions forDs+→ηe+νeandDs+→η′e+νe

H. J. LuJ. G. LuXiangdong RuanS. L. NiuQ. LiuLei ZhaoF. Y. LiX. Q. LiY. F. LongL. L. MaL. GongL. FavaL. FavaF. E. MaasM. GrecoM. GrecoT. HuA. AmorosoO. BakinaW. G. LiP. L. WangX. L. LuoA. DbeyssiJ. H. YinQ. P. JiY. J. SunP. X. ShenY. T. GuS. SpataroS. SpataroX. P. XuY. Y. LiuK. Y. LiuW. P. WangF. BianchiF. BianchiZ. L. HuangFeng LiuX. L. JiS. AhmedY. X. YangZ. WuZhigang WangL. W. JiangLei LiZ. B. LiW. Ikegami AnderssonE. FioravantiM. AblikimG. A. ChelkovG. A. ChelkovG. A. ChelkovL. J. WuJun-yi ZhangA. JulinY. P. GuoZhiqing ZhangX. Q. HeX. L. GaoJin LiA. ZalloX. L. KangA. SarantsevA. SarantsevD. H. WeiQ. OuyangY. J. MoD. LiuS. S. FangY. B. LiuQ. L. XiuG. F. CaoJ. S. LangeQ. W. ZhaoA. HafnerQ. ZhaoZhe ZengP. KieseY. PanM. H. YeH. H. LiuJia XuY. Z. SunL. ZottiL. ZottiCheng LiC. HuXiang ZhouX. TangF. De MoriF. De MoriD. W. BennettZujian WangX. A. XiongZ. T. SunP. L. WangM. QiY. X. XiaJ. C. LiS. L. OlsenA. YuncuA. YuncuRoy A. BriereYaquan FangZ. A. LiuZhiqing LiuW. C. YanJie LiuL. D. LiuX. N. MaI. TapanX. Y. ZhouGang ZhaoY. T. LiangY. G. XieJ. ZhuangT. WeberM. ShaoA. A. ZafarS. B. LiuKe WangX. S. JiangY. H. GuanC. LengX. C. LouL. Y. DongM. X. LuoY. H. YanV. PrasadS. X. DuY. BanT. JohanssonJ. F. ChangH. J. YangZ. G. ZhaoJ. W. ZhaoW. J. ZhengYucheng HuangD. V. DedovichZ. L. DouT. HoltmannP. L. LiQ. P. JiG. RongP. WeidenkaffF. H. HeinsiusW. M. SongY. C. ZhuKai LiuX. F. WangK. H. RashidP. F. DuanK. SchoenningQ. Y. LiY. B. ZhaoO. CakirO. B. KolcuO. B. KolcuM. FritschX. CaiQ. M. MaLiqing XuX. Y. ShenG. F. XuKlaus PetersF. A. HarrisS. P. WenB. L. WangX. S. QinQ. GaoY. N. GaoS. JinB. KlossW. ShanNiklaus BergerK. J. ZhuY. F. WangJ. Z. BaiJ. Q. ZhangE. H. ThorndikeM. KavatsyukX. Y. NiuT. HeldY. ZhangT. C. ZhaoY. YuanY. S. ZhuChi ZhangM. G. ZhaoX. Q. HaoS. J. ChenR. P. GuoJie ZhaoD. X. LinH. M. HuH. LeithoffG. S. HuangZhenghao ZhangZ. H. QinY. NefedovA. ZhemchugovA. ZhemchugovY. GuoJia-jia QinJia-ju ZhangXiao-rui LyuY. DingB. S. ZouI. B. NikolaevI. B. NikolaevY. Q. WangT. HussainF. C. MaX. Y. MaO. DorjkhaidavS. NisarC. J. TangY. HuY. P. LuD. J. AmbroseTao LuoB. X. ZhangZ. NingS. HanY. J. MaoJ. B. LiuX. K. ChuH. X. YangW. X. GongA. CalcaterraS. FeganX. Y. SongF. FeldbauerI. GarziaB. J. LiuB. X. YuG. S. VarnerA. Q. GuoD. BettoniW. P. WangX. H. MoDan WangH. P. PengJ. L. ZhangR. FarinelliR. FarinelliM. BertaniR. PolingL. H. WuM. SavrieD. XiaoCui LiH. H. ZhangZ. HaddadiH. L. MaW. KühnZ. Y. YouX. FangM. AlbrechtS. H. ZhuZ. A. ZhuL. S. WangX. B. JiM. H. YeJianping ZhengJ. P. LiuJ. F. SunJ. F. QiuX. C. ChenS. ZhuS. SchumannF. Y. LiH. S. ChenD. M. LiZ. J. SunH. LoehnerB.y. WangH. XiaoL. YangYao WangJ. M. BianZhenyu ZhangS. J. ZhaoS. MarcelloS. MarcelloY. ZengP. PatteriW. D. LiPeilian LiuX. Y. JiangLingxuan ZhangX. H. SunJianhao ZhangK. GoetzenJ. G. MesschendorpM. PelizaeusH. L. DaiIgor BoykoL. L. WangH. CaiQ. A. MalikG. MezzadriM. M. MaJ. P. DaiF. NerlingI. UmanBingxuan LiuH. B. LiM. ShiJ. ChaiW. GradlJ. C. ChenC. P. ShenG. CibinettoX. R. ZhouYu ZhangM. DestefanisM. DestefanisY. B. ChenXiaofeng ZhuJ. Z. ZhangR. Baldini FerroliG. LiM. RipkaA. G. DenigC. L. LuoL. P. ZhouNasser Kalantar-nayestanakiP. MusiolB. Y. ZhangD. Y. WangC. C. ZhangC. Morales MoralesQ. J. XuY. M. MaZ. P. MaoM. H. GuC. D. FuC. DongS. SosioS. SosioP. LarinJ. MinC. F. RedmerXiaocong AiB. ZhongL. B. GuoX. R. ChenC. SchnierX. T. HuangZ. G. WangH. Y. ZhangX. N. LiZ. Y. DengHaiwen LiuH. P. ChengL. XiaJ. FangTao LiJoachim PetterssonB. KopfJ. LiuW. B. YanC. X. YuK. L. HeG. X. SunJ. V. BennettH. MuramatsuXingguo LiUlrich WiednerY. H. ZhengCong-feng QiaoG. F. ChenX. K. ZhouO. AlbayrakD. H. ZhangCh. RosnerR. KliemtZ. JiaoFu-hu LiuC. Q. FengM. Z. WangJimin ZhaoR. G. PingG. R. LiaoJ. F. HuJ. F. HuJ. Y. ZhangJie YuY. B. LiN. Yu. MuchnoiN. Yu. MuchnoiB. ZhengX. S. KangY. H. ZhangM. KornicerT. MaZ. GaoJ. S. HuangC. X. LiuT. J. MinK. J. ZhuY. K. HengZ. Y. WangL. YanL. YanY. T. ZhangM. MaggioraM. MaggioraLing ZhaoZ. L. HouH. Y. ShengC. Z. YuanX. LiuH. R. QiZ. J. XiaoSerkant Ali CetinJ. B. JiaoJianmin DongS. Q. ZhangFang LiuQ. AnI. DenysenkoS. QianJialun PingK. ZhangX. Y. ZhangM. LaraE. BogerE. BogerY. P. LuHao-lin LiM. Y. DongM. TiemensH. B. LiuJ. H. ZouS. S. SunR. E. MitchellBibo KeM. N. AchasovM. N. AchasovGiulietto FeliciS. PacettiS. PacettiKe LiH. LiangP. L. ChenF. F. AnMagnus WolkeY. F. LiangD. P. JinDayong WangN. QinXiaozhong HuangAndrzej KupscW. L. YuanM. L. Chen

subject

Physics010308 nuclear & particles physicsBranching fractionElectron–positron annihilation0103 physical sciencesAnalytical chemistryHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsAtomic physicsNuclear Experiment010306 general physicsBranching (polymer chemistry)01 natural sciences

description

By analyzing 482 pb(-1) of e(+)e(-) collision data collected at root s = 4.009 GeV with the BESIII detector at the BEPCII collider, we measure the absolute branching fractions for the semileptonic decays D-s(+) -> eta e(+)nu(e) and D-s(+) -> eta ' e(+)nu(e) to be B(D-s(+) -> eta e(+)nu(e)) = (2.30 +/- 0.31 +/- 0.08)% and B(D-s(+) -> eta ' e(+)nu(e)) = (0.93 +/- 0.30 +/- 0.05)%, respectively, and their ratio B(D-s(+) -> eta ' e(+)nu(e)) / B(D-s(+) -> eta ' e(+)nu(e)) = 0.40 +/- 0.14 +/- 0.02, where the first uncertainties are statistical and the second ones are systematic. The results are in good agreement with previous measurements within uncertainties; they can be used to determine the eta-eta' mixing angle and improve upon the D-s(+) semileptonic branching ratio precision.

https://doi.org/10.1103/physrevd.94.112003